Turners Falls Instream Flow Study Study Process Overview

Study Plan Scoping Meeting April 16, 2013

Study Timing Relative to ILP schedule

ILP Schedule

- Proposed Study Plans (PSP): 4/15/13
- Study Plan Meeting: 5/14-15/13
- Additional Fish and Aquatic Meetings: 5/21-22, 6/4-5/13
- Seeking to conduct IFIM Study July timeframe
- Comments due on PSP: 7/14/13
- Revised Study Plans (RSP): 8/13/13
- Comments due on RSP: 8/28/13
- FERC Issues Study Plan Determination Letter 9/12/13 (assuming no disputes)
- We need stakeholder and FERC approval before initiating study

Why Accelerate?

• Findings will inform other studies, fish passage alternatives, and potential impacts on hydropower generation

TERMINOLOGY

Macrohabitat - water quality and hydrology

Mesohabitat - commonly occurring habitat types

Critical habitat - important to a species even if not common

Microhabitat - depth, velocity and cover within each mesohabitat

Weighted Usable Area - quantitative index of habitat suitability

PHABSIM Study

- 1. Study Planning
- 2. Locate reaches and transects
- 3. Obtain channel profile and microhabitat data
- 4. Develop hydraulic model
- 5. Input suitability rating criteria
- 6. Output suitability available at each flow increment of interest

PHABSIM Study

- 1. Study Planning
- 2. Locate reaches and transects
- 3. Obtain channel profile and microhabitat data
- 4. Develop hydraulic model
- 5. Input suitability rating criteria
- 6. Output suitability available at each flow increment of interest

Review physical characteristics

Link species/lifestages or guilds to specific mesohabitats

Define overall study area

Select study sites representative of each reach

Representative Study Site

Cell Boundaries are located at breaks in habitat types

Cell Boundaries (continued)

One transect is located within each longitudinal cell

POINT BAR

EFLE

RUN

TYPICAL STUDY SITE LAYOUT

PHABSIM Study

- 1. Study Planning
- 2. Locate reaches and transects
- 3. Obtain channel profile and microhabitat data
- 4. Develop hydraulic model
- 5. Input suitability rating criteria
- 6. Output suitability available at each flow increment of interest

Verticals are located along each transect to capture key substrate and profile features

Verticals and cell boundaries act to divide each segment into a mosaic of known areas

SUBSTRATE CLASSIFICATION

GRAVEL

COBBLE

IMBEDDEDNESS

highly imbedded

un-imbedded

VELOCITY REFUGE

PHABSIM Study

- 1. Study Planning
- 2. Locate reaches and transects
- 3. Obtain channel profile and microhabitat data
- 4. Develop hydraulic model
- 5. Input suitability rating criteria
- 6. Output suitability available at each flow increment of interest

Calibration flows are gathered across the flow range of interest

This permits interpolation and extrapolation of other flows

PHABSIM Study

- 1. Study Planning
- 2. Locate reaches and transects
- 3. Obtain channel profile and microhabitat data
- 4. Develop hydraulic model
- 5. Input suitability rating criteria
- 6. Output suitability available at each flow increment of interest

Habitat Suitability Criteria

- Depth
- Velocity
- Channel Index

Habitat is "pixilated" into a mosaic of known dimensions

2D Finite Elements Model

Survey elevations

bathymetry

Figure 4: Domain with Elevations (in meters) and Initial Computational Mesh

2D Finite Elements Model

helest 10.0 m

Scenario "A"

Scenario "B"

PHABSIM Study

- 1. Study Planning
- 2. Locate reaches and transects
- 3. Obtain channel profile and microhabitat data
- 4. Develop hydraulic model
- 5. Input suitability rating criteria
- 6. Output suitability available at each flow increment of interest

Model output: Habitat-flow relationships for each study reach

Suggested Problem-Solving Process

- Review hydrology time series
- Compare habitat under existing and alternate flow scenarios
- Compare project operation under existing and alternate flow scenarios
- Assess extent to which <u>all</u>objectives are met under each flow scenario
- **Evaluate trade-offs**
- **Re-run alternative scenarios**

Problem-Solving Options

• Habitat Time Series

- Define applicable bio-periods
- develop flow duration data for each
- Merge WUA/flow curve with flow duration curve
- Look for alternatives that meet habitat and operation objectives

Persistent Habitat Analysis

- Map spatial distribution of habitat "hotspots" at paired flows in GIS
- Look for pair combinations that provide consistently good habitat
- Develop matrix for species/lifestages
- Iteratively look for scenarios that balance both operation and habitat objectives

Habitat suitability relationship

July - September habitat suitability

Hydrologic Data

Percent of time indicated streamflow was equaled or exceeded	Streamflow, in cubic feet per second	Percent of time indicated streamflow was equaled or exceeded	Streamflow, in cubic feet per second		
1	196	55	33		
5	122	60	31		
10	90	65	28		
15	76	70	27		
20	63	75	25		
25	56	80	23		
30	49	85	21		
35	45	90	19		
40	41	95	16		
45	38	99	13		
50	35				

Hydrograph + habitat

Effect of existing flow diversion Weighted Usable Area ft2/1000ft **Natural** "worst case" current practice % of time streamflow was equaled or exceeded

Effect of alternative diversion strategies

Persistent Habitat

Persistent Habitat

Smallmouth Bass Spawning Persistent Quality Habitat Area (FT2), by Flow Pairs (cfs).

Generation Flow (cfs)														
Minimum Flow (cfs)	2,000	3,500	5,000	7,500	10,000	15,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	86,000
2,000	965,602	935,388	900,783	828,447	704,149	466,328	349,382	250,317	163,334	100,220	66,922	52,090	20,395	20,395
3,500		1,001,643	946,040	847,423	715,979	474,856	356,830	255,438	167,045	103,931	66,922	52,090	24,105	24,105
5,000			1,049,421	877,745	726,708	480,531	362,039	256,572	168,179	103,931	66,922	52,090	24,105	24,105
7,500				937,519	768,238	506,749	385,227	262,861	168,858	103,931	66,922	52,090	24,105	24,105
10,000				100	805,333	535,976	400,443	276,022	175,295	108,936	68,323	52,090	24,105	24,105
15,000						599,897	436,737	310,020	194,184	115,771	72,740	55,314	27,329	27,329
20,000	_	_		_			468,765	331,818	208,709	121,782	76,365	55,521	30,954	30,954
30,000							_	376,417	252,176	163,836	107,240	65,648	35,979	35,693
40,000						_	_		290,844	200,063	142,759	98,469	53,680	52,394
50,000								_		238,531	171,216	122,087	77,299	67,568
60,000										_	207,370	151,608	101,943	88,365
70,000	_											189,642	128,686	113,520
80,000													156,313	139,663
86,000				_				_		_				149,553