

April 19, 2018

VIA ELECTRONIC FILING

Ms. Kimberly D. Bose Secretary Federal Energy Regulatory Commission 888 First Street, NE Washington, DC 20426

Re: FirstLight Hydro Generating Company, Turners Falls Hydroelectric Project (FERC No. 1889) and Northfield Mountain Pumped Storage Project (FERC No. 2485). Submittal of RMC 1994 Report.

Dear Secretary Bose:

On April 6, 2018, FirstLight Hydro Generating Company (FirstLight) filed a letter with the Federal Energy Regulatory Commission (FERC or the Commission), which included the following four reports as requested by FERC in its March 16, 2018 letter to FirstLight.

- Harza Engineering Company (Harza) & RMC Environmental Services (RMC). (1992). Turners Falls downstream fish passage studies: Downstream passage of juvenile clupeids, Fall 1991. Report to Northeast Utilities Service Company. Berlin, CT.
- Harza & RMC. (1993). Turners Falls downstream fish passage studies: Downstream passage of juvenile clupeids, Fall 1992. Prepared for Northeast Utilities Service Company. Berlin, CT.
- RMC. (1994). Emigration of juvenile clupeids and their responses to light conditions at the Cabot Station, Fall 1993. Prepared for Northeast Utilities Service Company. Berlin, CT.
- RMC. (1995). Log sluice passage survival of juvenile clupeids at Cabot hydroelectric station Connecticut River, Massachusetts. Drumore, PA. Report to Northeast Utilities Service Company.

In its filing, FirstLight mistakenly omitted the third report above (RMC, 1994). Please find attached the requested report. If you have any questions regarding this filing, please feel free to contact me at the number below.

Sincerely,

Douglas Bennett Plant General Manager

Attachment: RMC 1994 Report

uples P. Bornett

Douglas Bennett

Plant General Manager- Massachusetts Hydro FirstLight Power Resources, Inc. 99 Millers Fall Road Northfield, MA 01360 Tel. (413) 659-4489/ Fax (413) 659-4459 E-mail: douglas.bennett@firstlightpower.com

EMIGRATION OF JUVENILE CLUPEIDS AND THEIR RESPONSES TO LIGHT CONDITIONS AT THE CABOT STATION, FALL 1993

Prepared for:

NORTHEAST UTILITIES SERVICE COMPANY 107 Selden Street Berlin, Connecticut 06037

Prepared by:

RMC ENVIRONMENTAL SERVICES, INC.

A Division of Normandeau Associates

Northeast Regional Office

224 Old Ferry Road

Brattleboro, VT 05301

December 1994

TABLE OF CONTENTS

EXECU	TIVE SUMMARY ES-	1
1.0	NTRODUCTION	1
2.0	STUDY SITE	2
3.0	METHODS AND MATERIALS 3.1 Study Design 3.2 Sampling 3.3 Light Experiments	3
4.0	RESULTS 4.1 Timing and Emigration 4.2 Responses to Light Conditions 4.3 Light Measurements 4.4 Species Composition	6 6 7
5.0	DISCUSSION	9
6.0	CONCLUSIONS	11
7.0	LITERATURE CITED	12
	APPENDIX I	38

LIST OF TABLES

Table 4-1	Daily juvenile clupeid passage, average water temperature and canal flow at Cabot Station, September - November 12, 1993	13
Table 4-2	Variation in hourly catches of juvenile clupeids under three test conditions (ambient light, sluice light, and 20 min interval near forebay light) at Cabot Station, September - October, 1993.	14
Table 4-3	Comparison of daily juvenile clupeid catches under three conditions (ambient light, sluice light, and 20 min interval near forebay light) at Cabot Station, September - October, 1993. Only observations after 19:00 used	14
Table 4-4	Comparison of juvenile clupeid catches (number per hourly collection) at three test conditions (ambient light, sluice light, and 20 min interval near forebay light) at the Cabot Station sluice, September - October, 1993. Only observations after 19:00 used	
Table 4-5	Comparison of daily juvenile clupeid catches (number per 20 min collection) during 20 min interval lighting (off and on) at the sluice gate of Cabot Station, September October, 1993. N=36 observations when lights were off and 33 when lights were during the study period	-
Table 4-6	Correlation matrix of environmental variables with log(catch+1) from Cabot Bypas Canal, 1993. Only start times from 19:00 on used	s 16
Table 4-7	ANOVA for week and lighting as main effects for log (clupeid catch + 1) at Cabot Station, Fall 1993. Only start times from 19:00 on used	17
Table 4-8	Light intensity measurements (lux) in Cabot Forebay, fall 1993	18
Table 4-9	Light intensity (lux) vs. depth at the log sluice gate, Cabot Station, fall 1993	28
Table 4-10	Non-alosids collected during sampling at Cabot Station, fall, 1993	29
Table 4-11	Number and percent composition by day of American shad and blueback herring collected during sampling at Cabot Station, fall 1993.	30
Table 4-12	Length frequency distribution (5 mm total length groups) of American shad and blueback herring collected during sampling at Cabot Station, fall 1993	31

LIST OF FIGURES

Figure 2-1	Schematic of Turner's Falls System	32
Figure 2-2	Schematic of Cabot Station	33
Figure 3-1	Schematic of the log sluice sampler	34
Figure 3-2	Schematic of Cabot Station forebay showing 9 light measurement stations	35
Figure 4-1	Daily clupeid catch with mean water temperature (C) and canal flow (cfs) at Cabot Station, 1993	36
Figure 4-2	Mean clupeid catch by time of day for each lighting scheme used at Cabot Station, 1993	37

EXECUTIVE SUMMARY

As part of Northeast Utilities Service Company's continuing cooperation with state and federal resource agencies and their desire to afford safe downstream passage to emigrating fishes at their dams, a study was proposed for Cabot Station during fall 1993 to continue investigations of measures to enhance downstream migration of clupeids. Due to an outage of Unit 1 during the emigration time period, the proposed study was limited to determination of the timing of the 1993 clupeid emigration and the investigation of the effects of lighting on clupeid passage through the log sluice.

The log sluice sampling device at Cabot Station was operated generally three days a week from September 8 through November 12, 1993. All clupeids which passed through the sluice were enumerated and subsamples were measured and identified to species. During each weekly sample period, the effects of three discrete lighting conditions on passage rates were evaluated; one lighting condition per daily sample was investigated. Ambient light condition was normal Station lighting, the sluice light condition was sluice light and near forebay light on continuously with the far forebay light off, and the 20 min interval condition was sluice light on continuously with far forebay light off and the near forebay light cycled on and off every 20 min. During the 20 min interval testing, clupeids were enumerated every 20 min; during the other light conditions, clupeids were enumerated every hour.

On September 8, the first day of sampling, 88 juvenile clupeids were collected. Water temperature was 24°C (75.2°F) and canal flows were 2,591 - 3,507 cfs. Abundance generally increased to a peak between October 5 and 7 with water temperatures of 14 - 14.5°C (57.2-58.0°F); secondary peaks occurred between October 19 - 28. Numbers generally declined thereafter and the total clupeid catch on November 12 numbered 2,654. Water temperature was 6.5°C (43.7°F). Most clupeids (88.4%) were collected between 1900 and 2200 hr.

Clupeid passage was 168 times greater at the sluice light condition and 233 times greater at the 20 min interval condition than during ambient conditions. Statistically, the passage at ambient conditions was significantly lower (P < 0.05). Passage rates between sluice light and intermittent lighting conditions were not significantly different (P > 0.05). Differences between passage rates when the near forebay light was on vs off, within the 20 min interval tests, were not statistically significant (P > 0.05).

1.0 INTRODUCTION

The restoration of anadromous fishes, primarily American shad (Alosa sapidissima), blueback herring (Alosa aestivalis), and Atlantic salmon (Salmo salar), to the Connecticut River has been a priority of state and federal agencies for more than 20 years. Fishways and lifts installed at dams on the River have generally been successful in providing a means for upstream migration of these fishes. Concern now has been focused on safe, efficient downstream passage for both adult and juvenile fish.

A Memorandum of Agreement (MOA) was signed in 1990 between Northeast Utilities Service Company (NUSCO), The United States Fish and Wildlife Service (USFWS) and the Connecticut River Atlantic Salmon Commission (CRASC), and its member agencies, which designated that NUSCO would provide safe and efficient downstream passage facilities at all of their dams by 1994 (NUSCO et al. 1990). In response to the MOA, NUSCO has conducted studies at Hadley Falls, Holyoke Canal, Cabot Station, and Northfield Mountain Pumped Storage Station since 1990 to determine measures required to enhance downstream passage through existing structures and to investigate means to prevent or limit passage through turbines. At Cabot Station, a pre-feasibility study (Ruggles 1990) evaluated various techniques that had been used at other sites to divert emigrating fish away from turbine intakes. In the fall of 1991, a study was conducted to determine the proportion of emigrating clupeids which passed the Station by the log sluice and trash trough (Harza and RMC 1992). This study was generally repeated in the fall of 1992 with more emphasis placed on the determination of the proportion of clupeids using available routes to pass Cabot Station, the determination of approximate numbers of clupeids passed via the log sluice, and an evaluation of the trash trough as a viable downstream passage route (Harza and RMC 1993). During the performance of this study, general observations suggested that forebay lighting may play a role in the apparent reluctance of clupeids to readily pass down the log sluice. Preliminary experimentation with a mercury vapor light positioned under the walkway at the sluice entrance indicated that further study of lighting regimes was warranted (Harza and RMC 1993).

This report presents findings of a limited study conducted at Cabot Station during fall 1993. Originally, the proposed study was to be a confirmation of the 1992 results with the objectives of determining the proportion of clupeids passed through the trash trough openings and log sluice versus the turbines; further evaluation of trash trough passage; and to conduct a more formalized study to determine the effect of above water lights on passage through the log sluice. A mechanical failure and projected extended outage of turbine 1, however, precluded the possibility of achieving reliable, comparable results of the 1992 study due to the lack of attraction flows generated by the operation of Unit 1. Consultations between NUSCO and CRASC resulted in the approval of a study limited in scope. The objectives of the new proposed study were to determine the timing of the juvenile clupeid emigration past Cabot Station and to determine the effect of above water lights on downstream passage through the sluice.

2.0 STUDY SITE

The Turner's Falls Project generation facilities were built between 1905 and 1915. The Project consists of Turners Falls Dam, a canal gate house structure, a 2.1 mile long canal, Turners Falls No. 1 Station and Cabot Station (Figure 2-1). The Dam is located at River Mile 117 on the Connecticut River, Massachusetts.

Turners Falls Dam consists of the Montague Spillway and Gill Dam. The Montague Spillway has four 120-ft long by 13.5-ft high Bascule gates for pond elevation control. The Gill Dam includes a non-overflow section and three tainter gates. Water is typically either stored or spilled over the dam when river flows exceed approximately 15,000 cfs, the combined hydraulic capacity of Turners Falls Station No. 1 and Cabot Station. The canal gate house structure, situated on the east side of the river, is capable of directing up to approximately 15,000 cfs into the power canal.

Turners Falls No. 1 Station is located approximately 0.5 miles downstream from the gate house, on a Branch Canal (Figure 2-1). The station houses five Francis turbines with a total nameplate rating of 5.6 MW at a head of 43 ft. The total hydraulic capacity of the units at Turners Falls No. 1 Station is 2,500 cfs. The station is operated primarily when daily river flows exceed 12,500 cfs.

Cabot Station is an integral-intake powerhouse and is located at the downstream end of the power canal (Figure 2-2). The station has six Francis turbines with a total nameplate rating of 51 MW at a nominal head of 60 ft. Water flows to each of the turbines through three-bay intakes joined to the respective penstocks. The total hydraulic capacity of the station is 12,500 cfs.

A log sluice adjacent to Cabot Station is used as an alternate route for downstream migrating fish during emigration periods (Figure 2-2). During downstream migrations, the log sluice gate is lowered 2.0 - 2.5 ft below the forebay water level to produce a surface discharge of 150 to 220 cfs. A bulkhead insert was designed to enhance the number of fish using the log sluice. It was constructed to narrow and deepen the gate opening while maintaining the same discharge capacity. The insert fits into the stoplog slots of the log sluice, and has a 4 ft deep by 11 ft wide opening. The effect of the bulkhead insert on enhancing the use of the log sluice by downstream migrating fish was initially tested in the spring of 1992 (Harza and RMC 1992b).

An ice and trash trough, behind the top of the Cabot Station trash racks, is aligned perpendicular to the flow of water and discharges into the log sluice. In 1991, three openings were cut into the wall of the ice and trash trough to provide an alternative route for downstream movement of fish past Cabot Station. The maximum flow through any one opening is 123 cfs. If more than one slot is open at the same time, the flow through each slot is correspondingly less than 123 cfs. Each opening can be configured in two ways: 2.8 ft wide and 6 ft deep or 2.8 ft wide and 3 ft deep.

3.0 METHODS AND MATERIALS

3.1 Study Design

In order to determine the timing of the juvenile clupeid emigration, clupeids passing through the log sluice were enumerated prior to and after the expected daily movement peak of the run (O'Leary and Kynard 1986). Each sampling day consisted of six hourly samples, commencing at 1600 hr and ending at 2200 hr. The log sluice sampler was generally operated for three consecutive days during each week in September and October 1993. Canal wall repairs, which required draw down of the Canal, prevented sampling during the weeks of 12 - 18 September and 11 - 16 October. During the week prior to 11 October, the sampler operated for six consecutive days. All fish entering the sampler were enumerated and identified as clupeids or other (non alosids were identified to at least genus level) during each hourly sample. Subsamples of 100 clupeids were collected randomly over each hourly sample, identified to species, and measured to the nearest 5 mm fork length.

The effect of above water lighting on the passage of juvenile clupeids through the log sluice was evaluated by testing three distinct lighting regimes during each week's sampling. Each daily sample was conducted under normal lighting conditions (ambient), near forebay flood light on with sluice light on (sluice light), or near forebay light cycled on and off in 20 min intervals with sluice light on continuously (20 min interval). The light condition to be tested on a particular sampling day was chosen randomly prior to the onset of the study. During sampling under the 20 min interval light regime, clupeids were enumerated for each 20 min light condition i.e. light on or off.

Data were analyzed using the General Linear Model Procedures (GLM) of the Statistical Analysis System (SAS Institute, Inc., Version 6.03). These analyses consisted of analysis of variance and multiple range tests. Analyses were conducted on both non-transformed and transformed (log x+1) data; log transformation of the data improved the model fit. Thus interpretation is based on the results of log transformed data analysis. Differences in abundance of juvenile clupeids under the three test conditions were considered significant at $P \le 0.05$. For the purpose of delineating the effects of light on juvenile passage only data collected between 1900 and 2200 h were statistically compared, a time when light effects would be manifested. A separate analysis was also conducted for data collected between 1600 and 1900 h. The outputs of all the statistical analyses conducted are provided in Appendix I.

3.2 Sampling

The log sluice sampling device consisted of a 27.5 ft long stainless steel profile wire screen that diverted fish into a flume while shedding the majority of water which flowed onto the screen (Figure 3-1). The sampler was positioned immediately downstream of the log sluice gate. The screen was 11 ft wide at the mouth of the sampler narrowing to 6.4 ft at the downstream end. The screen consisted of 0.06 in wide bars, spaced 0.04 in apart, which provided an open area that was 40% of the total screen area. The sampler was framed in steel with 4.5 ft high wooden sidewalls.

Prior to commencement of each daily sample, the log sluice gate was closed, and a bulkhead insert which had an 11 ft wide by 4 ft deep opening was lowered into framework behind the skimmer gate. The inclined plane screen was lowered to a horizontal position with the upstream end of the screen resting on the bulkhead insert. The downstream end of the screen was

attached to a fixed pivot point so that the screen and bulkhead could be lifted, allowing passage of water under the sampling device during non-sampling periods. Once the screen was in place, the sluice skimmer gate was lowered to approximately 30% open (2.0 to 2.5 ft, depending upon Canal level) and the sample commenced. Water and fish diverted by the screen flowed through a 31 ft long, 1 ft wide flume onto a sorting table. The flume had an initial depth of 3.0 ft and at the downstream end, a final depth of 3.75 ft. An inclined section of profile wire screen at the end of the flume diverted fish up to the sorting table and allowed a portion of water to flow through to a regulated release valve. The remaining water and fish flowed across the sorting table and returned back into the log sluice through a 12 in diameter PVC pipe. The sorting table was equipped with a divider, installed length-wise, and gates installed at the point where water flowed onto the table (Figure 3-1). The gates allowed fish to be diverted to either side of the divided table. Removable screens at the end of the table retained fish on the table while water flowed into the drain pipe. During each hourly sample, all fish collected were identified, enumerated, and released. A subsample of up to 100 clupeids from each hourly collection was retained to determine species composition and length distribution. The species of each juvenile clupeid was determined by peritoneum coloration. At the end of each hourly sample, a crowder (constructed of two wooden poles and nylon mesh) was used to force fish that were residing in the flume onto the sorting table so they would be included in that collection.

Each daily collection consisted of six hourly samples, commencing on the hour from 1600 hr to 2100 hr (final hourly collection ended at 2200 hr). Prior to the opening of the sluice skimmer gate for each daily sampling, a light reduction profile of the water column immediately in front of the sluice was conducted. Light measurements were taken in 1 ft increments down to a 10 ft depth with a Li-Cor Model 185B Photometer. The proportional degradation of light intensity for each 1 ft of depth was determined and called the light attenuation coefficient. The sluice gate was opened and sampling commenced. At the beginning of each hourly sample, light measurements were taken at nine locations in the forebay (Figure 3-2) at depths of 1 ft and 3 ft with a LI-Cor Model LI-1000 Datalogging Photometer. At the end of each daily collection, the log sluice skimmer gate was closed, the inclined screen was raised, and the bulkhead insert was removed. The gate was then opened again.

3.3 Light Experiments

Three lighting conditions were evaluated and are termed: ambient lighting, sluice light, and 20 min interval lighting. Ambient lighting was the condition of normal Station lights operation. The forebay was illuminated primarily by two high pressure sodium lamps, initiated by photo cells, located on each side of the intake area (Figure 3-2). The sluice light condition consisted of the near sluice forebay light on continuously, the far forebay light off, and the sluice light on continuously. The sluice light was a 400 watt mercury vapor unit suspended approximately 4 ft above water level immediately in front of the sluice under the walkway (Figure 3-2). This light was turned on at 1600 hr and remained on until 2200 hr during all daily sampling under this condition. Sampling procedures during these light conditions followed methods described above. The 20 min interval light condition utilized the sluice light on continuously, the far forebay light off, and the near sluice forebay light cycled on and off every 20 min after it was energized. During Daylight Savings Time (Sept.-Oct.), this light generally turned on near 1800 hr; during Eastern Standard Time, it generally came on near 1700 hr. Sampling under this light condition generally followed the same procedures as the other two conditions except that during each hourly sample, the flume leading to the sorting table was cleared of fish every 20 min, coinciding with the cycling of the forebay light, and numbers of clupeids were enumerated for each 20 min cycle.

Only the two November samples were conducted during Eastern Standard Time, thus, the time change did not affect protocol for the light condition experiments.

4.0 RESULTS

4.1 Timing and Emigration

Sampling to determine the timing of emigration of juvenile clupeids was initiated on September 8, 1993 (Table 4-1; Figure 4-1). Some 88 fish were collected on that date indicating that juvenile clupeids may have arrived at Cabot Station prior to September 8, 1993. The average water temperature was 23.7-24.0°C (74.7-75.2°F) and canal flows averaged 2,485-3,220 cfs during the first week of sampling. The highest peak abundance occurred between October 6 and 8, coincident with average water temperatures of 14.4-15.0°C (57.9-59°F) and average canal flows of 7,836-12,040 cfs. Abundance of juvenile clupeids declined somewhat after that and other smaller peaks occurred on October 19-21 and October 27-28. Intensive sampling ceased on October 28, when the abundance of juvenile clupeids was still relatively high. Limited sampling continued until November 12, 1993, when the abundance of juvenile clupeids had declined considerably and water temperatures were 6.5°C (43.7°F). The Cabot forebay was visited November 19 between 1900 and 2000 h to observe juvenile clupeid density. Water temperature was 6.0°C (42.8°F). Although juvenile clupeids were still present in the forebay, their numbers were substantially less than those observed the prior week. These data suggest that the emigration period, as determined by the presence of juvenile clupeids at Cabot Station, lasted for at least two months, with peaks occurring over a much shorter time when water temperature averaged 10.7-15.0°C (51.3-59.0°F) and canal flows averaged approximately 4,600-12,040 cfs.

The passage rate of clupeids differed between time periods over the hours sampled (Table 4-2 and Figure 4-2). Under the non-ambient conditions, most (88.4%) passed the sluice between 1900 and 2200 h. In contrast, of those passing the sluice under the ambient condition, 92.5% (7,017 of 7,590) did so prior to 1900 h. Of the 138,687 juvenile clupeids using the sluice during the intermittent condition, 96.3% (133,549) did so between 1900-2200; under the continuous light condition, 84.3% (96,445 of 114,473) did so during this period.

4.2 Responses to Light Conditions

A total of 230,567 juvenile clupeids was collected between 1900-2200 h over the seven weeks of light testing (Table 4-3); the overall averages were 27.3 fish/hr at the ambient light condition, 4,592.6 fish at the sluice light test condition, and 6,359.5 fish at the 20 min interval test condition (Table 4-4). Though some variation occurred among weeks, the overall passage of juvenile clupeids between 1900-2200 h was nearly 168 to 233 times higher at the sluice light or 20 min light interval condition than at the ambient condition; only 0.2% of the total clupeids were collected at ambient and the remainder at the other two light conditions. Within the seven weeks of light testing, the sluice light condition was responsible for over 50% of the total weekly clupeid catch during two weeks and the 20 min interval lighting condition provided over 50% of the catch during the other five weeks. The passage rate at the ambient condition was consistently less than 8% of the weekly passage rate.

A correlation analysis was performed, as a screening process, to detect relationships between individual measured variables and daily juvenile clupeid catch between 1900-2200 h under each light condition. The resulting correlation matrices are given in Table 4-6. Correlations differed under the three test conditions. Under the intermittent light conditions clupeid catch was significantly correlated (P < 0.05) with date, average canal flow, and average water temperature. As the season progressed the catch increased as it did with an increase in flow. The catch was negatively correlated with water temperature. Under the sluice light condition clupeid catch was

correlated with average canal flow (positive) and water temperature (negative). None of the variables were correlated with clupeid catch under the ambient condition.

Data were further analyzed to evaluate the effects of light on the clupeid passage rate by a General Linear Model Procedure (GLM) using sampling week as a block. Two analyses were conducted; one on data collected between 1900-2200 h and the other using analysis data gathered at non-peak abundance periods (1600-1900 h). Abundance data were logarithmically transformed ($\log x + 1$).

The analysis for 1900-2200 h showed significant (P < 0.01) differences in clupeid catch among test conditions (Table 4-7). The Duncan's multiple range test showed that the passage rate at the ambient light condition was significantly (P < 0.05) less than at the other two conditions. However, the passage rates were not different (P > 0.05) between the sluice lights on and intermittent light condition. Similar statistical analyses on data gathered between 1600-1900 h did not show significant (P > 0.05) differences among the test conditions indicating that the effects of light were more pronounced after 1900 h.

The data were further analyzed to detect effects of intermittently turning the near forebay light on and off (Table 4-5). This analysis was conducted to determine if the assumption that cycling the near forebay light at 20 minute intervals may enhance the passage rate of juvenile clupeids through the log sluice. Though the clupeid passage rate was 16% higher during light off than light on condition, this difference was not significant (P>0.05).

4.3 Light Measurements

Light measurements taken at nine locations in the forebay (Figure 3-2) showed great variability in illumination throughout the study period (Table 4-8). The areas in front of Unit 1 through 5 were generally the brightest areas during times of daylight. After dark, during the ambient light conditions, illumination in front of the sluice and in front of Unit 1 was generally similar. Light intensity generally decreased along Units 2 through 4, then increased from Unit 5 to 6. Light readings during the sluice light condition (after dark) in front of the sluice and Unit 1 were generally similar. Intensity decreased steadily from Unit 2 through Unit 6. This pattern was noted during times with the near forebay light on, during the 20 min interval test condition, however, during periods with the forebay light off, readings were extremely low in front of all the Units. The area in front of the sluice was also dim, but measurements were from 2 to 4 times greater than those recorded in front of the Units.

Light attenuation measurements were taken virtually every day of sampling in front of the sluice gate during daylight hours. Daily variability in intensity and attenuation coefficients were noted throughout the study period (Table 4-9). The overall average light intensity attenuation coefficient was 0.240.

4.4 Species Composition

A total of 15 non-alosid species (681 specimens) was captured during the log sluice sampling (Table 4-10). In order of abundance, American eel, white perch, and smallmouth bass were most common.

Two alosid species, American shad and blueback herring, were captured. Of these, American shad comprised 93.1% of the sub-sampled catch (Table 4-11) and blueback herring

comprised 6.9%. The length distribution of these alosids is shown in Table 4-12. Most American shad measured between 71 and 90 mm with a range of 56 to 141 mm; most blueback herring measured between 71 and 90 mm with a range of 51 to 101 mm.

5.0 DISCUSSION

The primary objectives of the study were to 1) delineate the timing of emigration of juvenile clupeids; and 2) evaluate the responses of juvenile clupeids to different light conditions. Based on the 1993 capture data, the timing of the emigration, daily peak movement, and water temperature over which these movements occurred at Cabot Station can be established as follows. The emigration of juvenile clupeids began in September at water temperatures greater than 20.0°C (68°F), peaked in October, and tapered off in late October to early November. Water temperatures ranged from 14.4-15°C (57.9-59.0°F) during the peak emigration. The timing of the peak daily movements differed among the test conditions. Only 7.5% of all juveniles that utilized the sluice under ambient light condition passed between 1900-2200 h; under the 20 min interval light regime, 96.3% passed during this period, and 84.3% passed during these hours under the sluice light regime. O'Leary and Kynard (1986) reported that at the Holyoke Project (approximately 36 miles downstream of Cabot Station) daily peak movement occurred between 1800-2200 h; emigration began when water temperature declined to 19.0-21.0°C (66-69.8°F) in September, peaked at 9-15°C (48.2-59.0°F) and ended in late October or early November.

The second objective of the study was to evaluate the responses of juvenile clupeids to three light conditions (ambient, sluice lights on, and 20 min interval cycling of the near overhead forebay light). Clupeid passage rate was influenced by light conditions between 1900-2200 h. Passage was 168 and 233 times greater during sluice light and 20 min interval test conditions, respectively, than it was during the ambient condition. This difference was statistically significant (P < 0.05) which strongly implies that the lighting conditions tested enhanced clupeid passage relative to ambient conditions. Within the 20 min interval light test, however, the passage rate with the near forebay light off was not significantly different (P > 0.05) from that observed when the light was on; the overall passage rate was only 16% higher at light off than at light on and the variability was large between test dates.

Field observations indicated that the shadow cast at the entrance to the sluice by the walkway (Figure 3-1) under ambient conditions may have induced an avoidance response in clupeids present in the forebay. Fish appeared to be attracted to the lighted areas. They tended to school upstream of and avoid the shadow area. Both of the tested light conditions (sluice light and 20 min interval) included the use of the sluice light, which virtually eliminated the walkway shadow, and in turn, the avoidance response of the fish. It is not known whether the sluice light simply minimized the avoidance response or actually attracted juvenile clupeids. Although results have not been consistent, attraction of juvenile clupeids to underwater mercury vapor lights has been noted elsewhere (EPRI 1990).

Despite the lack of statistically significant passage rates between light conditions during the interval tests, observations at the site indicated that clupeids responded to changes in the light conditions. Fish became startled when the light was turned off; less so than when it was turned on since the forebay light, when energized, slowly increased to maximum intensity over a 2-3 min period. In addition, it was observed that once the forebay light was on, juvenile clupeids tended to be more dispersed throughout the areas of the sluice entrance and Unit 1 intake. During the light off period, most juveniles appeared to concentrate near the sluice entrance, where the sluice light was located.

The net benefit of instituting one of the experimental lighting conditions as the standard condition during future out migrations is difficult to assess. Previous sluice and turbine passage studies (Harza and RMC 1993) were conducted predominately under the ambient light condition

and indicated that 88% of the juvenile clupeids passed through the sluice. This sampling, however, was conducted primarily between 1700 and 2100 hr. Data from 11 diel samples during 1992 indicated that 94.4% of all fish passing through the sluice between the hours of 1600-2200 h were collected during the period of 1600-1900 h. This is similar to the results of the 1993 ambient lighting condition tests where 92.5% of the total passage between 1600-2200 h occurred during the period of 1600-1900 h. Under the test lighting conditions, this ratio changed dramatically. For the combined test conditions, only 9.2% of all clupeids captured during the 1600-2200 h period were collected between 1600-1900 h. Most (90.8%) passage occurred after dark under light test conditions.

The difference between the 1992 and 1993 results may have been due to the experimental light conditions. It is possible that the dominance of daytime migration during 1992 may have been due to the walkway shadow inhibiting sluice passage at night. Once the shadow was eliminated by the sluice light in 1993, nighttime migration may have been enhanced.

Another explanation may be that the presence of the sluice light induced the fish to migrate at night when they otherwise may not have, and that the walkway shadow under the ambient condition had no effect on migration. This is not supported by the differences noted between 1992 and 1993, however. Furthermore, studies at the Holyoke Project have indicated an evening/early night peak in clupeid passage rates (O'Leary and Kynard 1986; Harza and RMC 1993).

It is most likely that both the reduction of the walkway shadow effect and the apparent attraction of the clupeids to lighted areas contributed to the observed difference between the ambient and test conditions.

6.0 CONCLUSIONS

The emigration of juvenile clupeids (American shad and blueback herring), as measured at the Cabot Station log sluice, began in early September and lasted through early to mid November. The peak occurred in October. The water temperature ranged from 6.5-24.0°C (43.7-75.2°F); water temperature during the emigration peaks ranged from 10.7-17.4°C (51.3-63.3°F). The canal flows were 4,597 to 10,998 cfs. American shad comprised 93.1% of the clupeid catch; the remainder were blueback herring.

Significantly more (P < 0.05) juvenile clupeids passed the log sluice during the lighted conditions than at ambient lighting. There were, however, no significant differences (P > 0.05) in passage rates between continuous sluice lighting and intermittent near forebay lighting, nor between near forebay light on and off condition.

7.0 LITERATURE CITED

EPRI. 1990. Fish protection systems for hydro plants. Electric Power Research Institute, Palo Alto, CA. Rept. No. EPRI GS-6712s, Research Project 2694-1.

Harza Engineering Company and RMC Environmental Services, Inc., 1992. Turners Falls downstream fish passage studies - Downstream passage of juvenile clupeids, Fall 1991.

Harza Engineering Company and RMC Environmental Services, Inc., 1992b. Turners Falls downstream fish passage studies - Atlantic salmon smolts migration route study, Spring 1992.

Harza Engineering Company and RMC Environmental Services, Inc., 1993. DRAFT -Turners Falls downstream fish passage studies - Downstream passage of juvenile clupeids, Fall 1992.

Northeast Utilities Service Company, Connecticut River Atlantic Salmon Commission, U. S. Fish and Wildlife Service, State of Massachusetts, State of New Hampshire, and State of Vermont. 1990. CRASC-NUSCO Downstream Fish Passage Memorandum of Agreement. 13 pp.

O'Leary, J. A. and B. Kynard. 1986. Behavior, length, and sex ratio of seaward migrating juvenile American shad and blueback herring in the Connecticut River. Trans. Am. Fish. Soc. 115:529-536.

RMC Environmental Services, Inc., 1993. Draft report on response of juvenile clupeids to the louvers in the Holyoke Canal, fall, 1993.

Ruggles, C. P. 1990. A critical review of fish exclusion and diversion from hydroelectric turbine intakes, with special reference to the Turners Falls Project on the Connecticut River. A report to Northeast Utilities Service Company.

Table 4-1. Daily juvenile clupeid passage, average water temperature and canal flow at Cabot Station, September - November 12, 1993.

	TOTAL	AVERAGE WATER	AVERAGE CANAL
DATE	CATCH	TEMPERATURE C	FLOW cfs
8-Sep-93	88	24.0	2,876.3
9-Sep-93	629	23.7	3,219.8
10-Sep-93	405	24.0	2,485.2
22-Sep-93	233	19.0	3,981.5
23-Sep-93	1,288	18.7	4,187.0
24-Sep-93	128	18.7	3,540.3
27-Sep-93	7,352	18.0	8,822.7
28-Sep-93	4	17.9	9,030.0
29-Sep-93	15,605	17.4	9,283.0
5-Oct-93	2,605	14.7	6,274.5
6-Oct-93	53,189	14.6	7,836.5
7-Oct-93	44,926	14.4	10,998.7
8-Oct-93	32,695	15.0	12,040.0
9-Oct-93	7,542	15,4	4,597.0
10-Oct-93	3,964	14.4	4,597.5
19-Oct-93	18,792	12.3	8,461.2
20-Oct-93	204	12.0	8,906.3
21-Oct-93	24,702	12.0	8,771.8
26-Oct-93	597	11.1	8,343.5
27-Oct-93	26,746	10.8	7,366.5
28-Oct-93	19,056	10.7	10,546.5
5-Nov-93	2,441	8.3	8,776.8
12-Nov-93	2,654	6.5	9,933.3
TOTAL	265,845	15.4	7,168.5

Table 4-2. Variation in hourly catches of juvenile clupeids under three test conditions (ambient light, sluice light, and 20 min interval near forebay light) at Cabot Station, September-October 1993.

		Time of Day							
	1600- 1700	1700- 1800	1800- 1900	Subtotal 1600-1900	1900- 2000	2000- 2100	2100- 2200	Subtotal 1900-2200	Totals
					000	203	88	573	7,590
Ambient	1,270	2,620	3,127	7,017	282			96,445	114,473
	1,363	4,373	12,292	18,028	44,254	25,641	26,550	•	•
Sluice	•	-	3,849	5,138	43,584	47,999	41,966	133,549	138,687
20 min Interval	399	890	3,047	5,150			co. co.4	220 567	260,750
TOTAL	3,032	7,883	19,268	30,183	88,120	73,843	68,604	230,567	200,750

Table 4-3. Comparison of daily juvenile clupeid catches under three test conditions (ambient light, sluice light, and 20 min interval near forebay light) at Cabot Station, September-October 1993. Only observations after 19:00 used.

				Total
Date	Ambient	Sluice Light	20 min interval	10141
3-10 September 22-24 September 27-29 September 5-7 October 3-10 October 19-21 October	87 128 4 64 155 76 59	629 233 15,572 43,304 4,144 15,224 17,339	405 1,281 7,350 52,436 30,027 23,978 18,072	1,121 1,642 22,926 95,804 34,326 39,278 35,470
26-28 October	573	96,445	133,549	230,567

Table 4-4. Comparison of juvenile clupeid catches (number per hourly collection) at three test conditions (ambient light, sluice light and 20 min interval near forebay light) at Cabot Station sluice, September-October 1993. Only observations after 19:00 used.

Date	Ambient	Sluice Light	20 min interval
8-10 September	29.0	209.7	135.0
22-24 September	42.7	77.7	427.0
27-29 September	1.3	5,190.7	2,450.0
5-7 October	21.3	14,434.7	17,478.7
8-10 October	51.7	1,381.3	10,009.0
19-21 October	25,3	5,074.7	7,992.7
26-28 October	19.7	5,779.7	6,024.0
OVERALL	27.3	4,592.6	6,359.5

Table 4-5. Comparison of daily juvenile clupeid catches (number per 20 minute collection) during 20 minute interval lighting (off and on) at the sluice gate of Cabot Station, September-October 1993. N=36 observations when lights were off and 33 when lights were on during the study period.

	Lig	Ratio	
Date	Off	On	Off:on
10 September	53.8	38.0	1.41
23 September	138.8	146.8	0.95
27 September	383.0	1,358.8	0.28
6 October	4,514.2	7,466.3	0.60
8 October	2,885.2	3,900.3	0.74
21 October	3,393.0	681.3	4.98
28 October	2,553.5	621.2	4.11
OVERALL	2,097.2	1,802.8	1.16

CORRELATION ANALYSIS 4 'VAR' Variables: LOGCATCH DATE AVGFLOW AVGWATER

N 7 7 7 7 7 Per	LOGCATCH 1 0 0.06365	Simple Statistics	Sum 12.424722 86313 45831 111.7 nder Ho: Rhe = 0 / N = AVGFLOW -0.58872	Minimum 0.69897 12304 2924.333333 11 = 7	Maximum 2.193125 12352 9182.333333 24
7 7 7 7 Per OGCATCH	1.77496 12330 6547.238095 15.957143 arson Correlation Coeff LOGCATCH 1 0	Std Dev 0.497978 16.267116 2772.765365 4.477339 ficients / Prob > R un DATE 0.06365	12.424722 86313 45831 111.7 nder Ho: Rho = 0 / N =	0.69897 12304 2924.333333 111	2.193125 12352 9182.333333
7 7 7 7 Per OGCATCH	1.77496 12330 6547.238095 15.957143 arson Correlation Coeff LOGCATCH 1 0	0.497978 16.267116 2772.765365 4.477339 ficients / Prob > R u DATE 0.06365	12.424722 86313 45831 111.7 nder Ho: Rho = 0 / N =	0.69897 12304 2924.333333 111	2.193125 12352 9182.333333
7 7 7 Pez DATE	12330 6547.238095 15.957143 arean Correlation Coeff LOGCATCH 1 0	16.267116 2772.765365 4.477338 ficients / Prob. > R un DATE 0.06365	86313 45831 111.7 nder Ho: Rho = 0 / N : AVGFLOW	12304 2924.333333 . 11 = 7	12352 9182.333333
7 7 Pez DATE	6547.238095 15.957143 arean Correlation Coeff LOGCATCH 1 0 0.06365	2772.765365 4.477339 ficients / Prob > R un DATE 0.06365	45831 111.7 nder Ho: Rho = 0 / N : AVGFLOW	2924.333333 11 = 7	9182.333333
7 Pea DATE	15.957143 Inson Correlation Coeff LOGCATCH 1 0 0.06365	4.477339 ficients / Prob > R u DATE 0.06365	111.7 nder Ho: Rho = 0 / N : AVGFLOW	. 11 = 7	
Pez LOGCATCH DATE	LOGCATCH 1 0 0.06365	ficients / Prob > R u DATE 0.06365	nder Ha; Rho = 0 / N : AVGFLOW	= 7	24
OGCATCH DATE	LOGCATCH 1 0 0.06365	DATE 0.06365	AVGFLOW		
DATE	1 0 0.06365	0.06365		AVGWATER	
DATE	0 0.0 6 365		-O.58872		
			0.1643	-0.08098 0.863	
AVGFLOW	ለ ዕስባሳ	1	0.6819	-0.98468	
AVGFLOW	0.8922	0	0.0915	0.0001	
	-0.58872	0.6819	1	-0.68726	
	0.1643	0.0915	. 0	0.088	
AVGWATER	-0.08098	-0.98468	-0.68726	1	
	0.863	0.0001	0.088	o	
4, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	·	LIGHTING = INT		= 	
		Simple Statistics			•
N	Меап	Std Dev	Sum	Minimum	Maximum
. 7	3.916684	0.780767	27.416786	2,608526	4.719638
		,			12354
7					12716
7	16.02381	4.561746	112,166667	10,5	24
D	earron Correlation Co.	efficients / Prob > IDI	under Her Bho ⊶€ / N	l = 7	
		• •		•	
	LOGCATCH	DAIL	AVGFLOW	AVGWATER	
LOGCATCH	1	0.78463	0.87108	-0.85846	
	U	0.0367	0.0107	0,0134	
DATE	0.78463	1	0.77521	-0.97895	
	0.0367	0.	0.0406	0.0001	
AVGFLOW	0.87108	0.77521	1	-0.78825	
	0.0107	0,0406	ò	0.0352	
AMOMATED					
AVGWATER					•
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3,000.			•
	<u> </u>	LIGHTING = SL			
		Simple Statistics	•		
N	Mean	Std Dev	Sum	Minimum	Maximu
7	3.7196	0.839633	26.037198	2,369216	4.63653
7	12331	16.226081	86314	12305	1235
7			49840	2985,333333	1107
7	15.957143	4.363176	111.7	10.666667	- 23
	Pearson Correlation C	cefficients / Prob > F	l under Ho: Rho=0 /	N = 7	
	LOGCATCH	DATE	AVGFLOW	AVGWATER	
LOGOATOU	4	0.70845	0.05074	_A 76614	
LOGGATGA					
_	·				
DATE	0.70945	1	0.62987	-0.98841	
	0.0742	0	0.1295	0.0001	
AVGFLOW	0.95274	0.62987	1	-0.71677	•
AMOMA TEE					•
MUINVEN					•
	7 7 7 7 7 7 P LOGCATCH DATE AVGFLOW AVGWATER N 7 7 7 7 7 1	N Mean 7 3.916684 7 12331 7 8038.714286 7 16.02381 Pearson Correlation Correlation Correlation LOGCATCH LOGCATCH 1 0 DATE 0.78463 0.0367 AVGFLOW 0.87108 0.0107 AVGWATER -0.85846 0.0134 N Mean 7 3.7196 7 12331 7 7120.047619 7 15.957143 Pearson Correlation Correlatio	N Name Nam	AVGWATER	New North

General Linear Models Procedure Class Level Information

Class	Lovels	Values
LIGHTING	3	20 MIN. INTERVAL AMBIENT SLUICE LIGHT
WEEKOF	7	1 2 3 4 5 6 7

Number of observations in data set = 21

General Linear Models Procedure

		Dependent \	/ariable:	LOGCA	тсн
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	. 8	24.17504078	3.0218801	7.53	0.0011
Error	12	4.81770524	0.40147544		
Corrected Total	20	28.99274603			
	R-Square	C.V.	Root MSE	LOGCATCH I	Vlean
	0.833831	20.19778	0,63362089	3.137081	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
LIGHTING	2	19.6173686	9.8086843	24.43	0.0001
WEEKOF	6	4.55787218	0.75961203	1.89	0.1635
Source	DF	Type II SS	Mean Square	F Value	Pr > F
LIGHTING	2	19.6173686	9.8086843	24.43	0.0001
WEEKOF	- 6	4.55767218	0.75961203	1.89	0.1635

Duncan's Multiple Range Test for variable: LOGCATCH

NOTE: This test controls the type I comparisionwise error rat, not the experimentwise error rate.

Alpha = 0.05 df = 12 MSE = 0.401475

Number of Mean	2	3
Critical Range	0.737	0.772

Means with the same letter are not significantly different

Duncan Grouping	Mean	N	LIGHTING
A	3.917	. 7	20 MIN. INTERVAL
A A	3.72	. 7	SLUICE LIGHT
В	1.775	7	AMBIENT

Least Squares Means

LIGHTING	LOGCATCH	Std Err	Pr > T		Pr > T HO:	LSMEAN(I) =	=LSMEAN(j)
	LSMEAN	LSMEAN	HO:LSMEAN = 0	i/ j	1,	2	3
20 MIN INTERVAL	3,91668372	0.2394862	0,0001	1		0.0001	0.5714
AMBIENT	1.77496033	0.2394862	0.0001	2	0.0001		0,0001
SLUICE LIGHT	3,71959976	0.2394862	0.0001	3	0.5714	0.0001	

NOTE: To ensure overall protectioon level, only probabilities associated with pre-planned comparisions should be used.

18

Table 4-8. Light intensity measurements (lux) in Cabot Forebay, fall 1993.

	Forebay L	ights on	:	Near:	1922		Far: Location	off			
			·		3	4	5	6	7	8	9
Date	Time		1	<u> </u>	2625	3640	4677	5944	5174	5295	4515
Sep-09	1708	1 ft	2841	2450	2635			3475	3120	3190	2641
36h-02	2,02	3 ft	1450	1428	1525	2233	3393	CI PC			~ 10
		J 16		·	50.4	440	399	356	358	325	248
	1900	1 ft	660	545	524			226	212	193	142
		3 ft	305	312	263	246	222	220			
		J 11			<i>C</i> 1	49	12	3	1	0.5	0.2
	2000	1 ft	54	54	61			1	0.8	0.2	0
	_00	3 ft	29	31	36	32	7	I.	5.0		
		J 11		•	50	46	12	1	1	0.5	0.3
	2100	1 ft	47	30	52			0.5	0.8	0.3	0.3
	2,00	3 ft	28	26	31	31	8	. U.J	5.5		

	Forebay L	ights or	ı:	Near:	1908		Far: _ Location	<u>off</u>		<u> </u>	
Date	Time		1	2 4860	<u>3</u> 5151	<u>4</u> 5456	5 4069	<u>6</u> 4530	<u>7</u> 5154	<u>8</u> 4535	4275 2442
Sep-10	3	1 ft 3 ft	5154 2897	2568	2802	3274	3271	3185	3067	2766	
	1900	1 ft	240	214	207	203 171	191 169	192 167	183 161	173 152	168 150
		3 ft	190 140	180 137	171 125	114	111	129	127	130 125	133 128
		1 ft 3 ft	129	124	123	113	128	143 113	128 113	114	113
	2100	1 ft 3 ft	164 142	172 146	165 142	162 148	126 122	113	113	113.	112

Table 4-8, cont.

r is tialy off

	Forebay L	ights or	n;	Near:	1855		Far: _ Location	off			9
				2	3	4	5	6	7	8	
Date	Time		1		5800	7370	7696	7749	7934	7621	520
Sep-22	1614	1 ft	5400	6211		4795	4809	5099	4898	5012	349
•		3 ft	3300	3014	2936			5104	5120	4962	366
	1705	1 ft	5000	4900	4139	5300	5125	5194		3020	264
	1705		2530	2344	2118	3175	3005	3184	3090	3020	
		3 ft	2550			1708	1643	1535	1453	1372	902
	1802	1 ft	1494	1462	1335		909	835	818	<i>7</i> 95	544
		3 ft	745	699	667	939	909	•		10	11
				68	70	65	27	18	15	13	11
	1902	1 ft	77		37	45	21	13	11	10	9
		3 ft	44	50				12	9 .	8	7
	2005	1 ft	60	65	61	56	28		9	7	7
	2005	3 ft	37	45	45	43	18	10	9		
		3 11			50	54	17	9	8	7	8
	2106	1 ft	60	60	52		13	9	7	7	8
		3 ft	35	46	33	40	1.5				
					1850		Far:	off			
	Forebay L	ights or	1:	Near:	1030	•	Location				
				2	3	4	5	6	7	8	120
Date	Time		1		1870	2074	1782	1430	1382	1530	120
Sep-23	1610	1 ft	3225	2219		1100	975	890	874	1020	754
		3 ft	1422	970	921			<i>(10</i>)	590	572	410
	4810	1 ft	1460	1518	1540	1381	680	642		364	260
	1712		855	895	870	450	407	384	375		
		3 ft				278	296	387	420	388	218
	1804	1 ft	360	342	297		181	246	254	206	131
	- - -	3 ft	182	180	151	165	101			æ	4
				12	13	9	. 8	6	6	5	3
	1905 *	1 ft	14		11	7	4	6	4	4	3
		3 ft	11	11				8	· 5	5	3
	2004	1 ft	53	70	70	52	15	7	5	5	3
	∠004	3 ft	34	36	46	39	13	1	J	•	
		J II	JT			2	1	2	2	2	2
	2110 *	1 ft	8	8	7	2	0.5	1	2	2	1
		3 ft	7	7	6	L	U.J	•			

Table 4-8. cont.

	Forebay L	ights or	1:	Near:	1903		Far: Location	1909	7	8	9
	Time.	-	1	2	` 3	4	5	6		4901	3290
Date	Time 1600	- _{1 ft} -	4669	4869	5160	5387	5082	5040	4717	2721	188
Sep-24	1000	3 ft	2431	2478	2428	3101	2952	2827	2629		
					3503	4147	4050	4125	4027	3871	296
	1700	1 ft	4381	3815	3303 1988	2548	2422	2459	2342	2261	182
		3 ft	2191	2152	1900				2350	2250	178
	1800	1 ft	2682	2590	2450	2442	2520	2381		1340	105
	1000	3 ft	1150	1320	1140	1486	1451	1440	1402		
					23	23	20	18	16	14	10
	1900	1 ft	31	27		11	11	9	8	7	6
		3 ft	13	13	10				a	25	90
	2000	1 ft	<i>5</i> 0	62	44	52	14	6	7	23 17	57
	2000	3 ft	27	25	33	33	9	4	4		
					50	51	13	5	6	23	87
	2100	1 ft	50	64	52	32	8	1	3	17	53
		3 ft	24	28	28	J.L					
				Near:	1830		Far:	off			
	Forebay L	ights on	1:	i dear •			Location	,			9
			1	2	3	4	5	6	7 4050	<u>8</u> 4250	534
Date	Time 1605	- _{1 ft} -	3953	4990	4390	5166	5230	5510		3128	3050
Sep-27	1002	3 ft	2314	2225	1992	3092	3073	2369	3199		
						3352	3371	3265	2578	3424	367
	1700	1 ft	2950	2880	2950	2015	2018	2038	1840	2016	224
		3 ft	1675	1500	1599					270	295
	1000	1 ft	250	229	201	225	239	254	198	155	172
	1800	3 ft	137	118	102	135	150	151	151	133	
						2	1.	1	1	1	1
		1 ft	9	6	5	1	0.8	1	0.8	0.5	0.8
	1900 *			6	5	1	U.U	-			
	1900 +	3 ft	8	U				•	0.2	07	QQ
	1900 * 2240		8 123	149	135	144	100 94	94 90	93 89	97 91	99 90

^{* -} Near forebay light off

Table 4-8. cont.

)le 4-0. cui	il.										•
	Forebay I	ights on	1:	Near:	1854	• 	Far: Location	1859		0	9
• •		_			3	4	5	6	7	<u>8</u>	5886
Date	Time		<u> </u>	6093	5802	6898	6536	6131	4220	5972	
Sep-28	1600	1 ft	5464			3729	3932	3977	2919	3234	354
		3 ft	2662	2322	2417	3129	2732				4350
				4260	4272	4892	4630	4395	3371	4577	
	1700	1 ft	3900	4360		2765	2690	2785	2450	2311	245
		3 ft	1806	2008	1789	2103				1004	190
			2266	1885	1670	2107	2070	1933	1682	1804	
	1800	1 ft	2266			1152	1072	1039	1039	947	963
		3 ft	957	765	692	1132			4.4	24	80
			60	42	41	60	22	10	1,1		
	1900	1 ft	62		25	39	12	7	8	21	47
		3 ft	31	23	23	37		_	0	25	83
			. 50	67	53	55	17	9	9		
	2004	1 ft	52		34	41	11	· 7	7	19	52
		3 ft	34	35	24			-	11	26	78
			47	61	50	58	20	7	11		49
	2104	1 ft	47		27	46	12	6	9	20	49
		3 ft	26	21	21	10					
								ce			

	Forebay L	ights or	1:	Near:	1851		Far: Location	<u>off</u>	7	8	9
Date Sep-29	Time 1603	_ _ _{1 ft} _	1 4510	2 4105	3 3876	5543 2913	5 5216 2668	5127 2643	5040 2481	4834 2358	3759 1881
w r	1700	3 ft 1 ft 3 ft	2100 3344 1569	1780 4365 1633	1886 3321 1341	4239 2202	4342 2218	4007 2019	4016 2125	4222 1984	2950 1516
	1801	1 ft 3 ft	2117 787	1775 853	1783 890	2135 1202	1980 1025	1961 983	1883 946	1733 915	1465 773
	1900	1 ft 3 ft	53 28	71 28	56 32	53 32	12 7	4 2	1	0.5	0
	2010	1 ft 3 ft	48 28	61 35	52 32	52 34	9 8	4 2	1	0	0
	2206	1 ft 3 ft	50 25	63 30	60 30	51 33	11 9	4 2	1	1	0

Table 4-8. cont.

	Forebay L	ights or	n:	Near:	1838	•	Far: Location	1844		8	9
	not .		1	2	3	4	5	6	7	10930	7487
Date	Time	- ,	11590	9678	8451	10310	9806	10270	10850		4280
Oct-05	1602	1 ft	5067	4400	4157	5682	5459	5787	6249	6152	
		3 ft	3007			C400	6270	6298	6328	5960	360
	1700	1 ft	5296	5512	4638	6482	3714	3412	3591	3465	212
		3 ft	4417	2595	1929	3845				610	417
	400#	1 ft	699	750	637	768	722	713	648		226
	1807		262	314	326	434	412	371	363	307	
		3 ft				£1	17	10	80	30	66
	1908	1 ft	47	63	63	51 20	10	3	4	12	35
		3 ft	20	26	27	30				34	73
			48	62	56	50	14	6	8		39
	2000	1 ft		15	23	32	8	3	4	17	
		3 ft	20			1	18	5	6	20	69
	2105	1 ft	46	56	57	51	8	4	3	15	37
		3 ft	23	27	26	31					
		<u></u>			1842		Far:	off			
	Forebay L	ights or	n:	Near:	1042		Location				9
		_			3	4	5	6	7	8	3270
Date	Time		1 1002	3764	3351	5459	5232	5056	4928	4791	
Oct-06	1600	1 ft	4093		1628	2818	2575	2448	2246	2433	1533
		3 ft	2143	1756			0776	3608	3613	3402	3520
	1700	1 ft	2802	2754	2704	3862	3776	1710	1780	1696	1213
	1700	3 ft	1008	1039	874	1960	1820	1710			
					745	833	792	708	673	618	468
	1810	1 ft	861	788	743 325	418	375	389	343	315	270
		3 ft	387	395				0 .	0	0	0
	2115 *	1 ft	5	2	3	0	0	0	0	0	. 0
•	4115	3 ft	4	4	3	0	0	0		_	
					60	66	11	3	2	0:5	0.3
	2124	1 ft	52	71		30	7	0.8	1	0	0
		3 ft	25	34	34	Ju					

^{* -} Near forebay light off

	Forebay I	ights or	ı:	Near:	1841		Far: Location	off	7	8	9
Date	Time	_	1	2	3	4	5	6	6190	6374	3854
Oct-07	1600	_ _{1 ft} _	5607	5367	5414	6350	6651	6254		2473	1955
UCI-U7	1000	3 ft	3307	2192	2347	2827	3075	2314	2738	2413	
			•	2025	2948	3977	3954	3857	3826	3890	3699
	1709	1 ft	3210	2925	•	2000	1866	1852	2049	1844	1887
		3 ft	1323	1306	1318				041	888	647
	1806	1 ft	1028	896	905	1039	1040	940	941		387
	1000	3 ft	438	361	313	503	503	447	445	436	
					~ 1	47	11	4	1	1	0.5
	2000	1 ft	42	55	54	26	8	2	0.5	0.3	0.3
		3 ft	21	21	17					0.5	0.5
	2108	1 ft	45	62	45	45	13	7	2		0.3
•	2100	3 ft	21	24	22	28	8	1	0.5	0.3	
				··	1030		Far:	off			
	Forebay L	ights on	1:	Near:	1839	•	Location		-		
	-						5	6	7	8	9
Date	Time		11	2	3	<u>4</u> 11334	11222	7005	11050	11127	11112
Oct-08	1600	_ 1 ft _	8602	11017	11062		6559	5114	5024	5648	5808
		3 ft	4898	5016	5055	7019					5704
		1 6	5194	5026	4917	6477	5854	4458	5261	5654	
	1710	1 ft		2078	2033	3285	2796	2746	2719	2908	3022
		3 ft	2325	2010	2020		-00	500	624	680	680

4

1 ft

3 ft

1 ft

3 ft

1908 *

0.2

0.1

^{* -} Near forebay light off

makla 4 9 cont

	Forebay L	ights or	1:	Near:	1826		Far: Location	off	<u> </u>		
					3	4	5	6	7	8	9
Date	Time		1	2		12130	11060	6868	8548	9411	8156
Oct-09	1601	1 ft	13000	11100	10560		6325	3958	4742	5604	600
		3 ft	5157	5046	4906	6605	0323		4	0041	379
		1.6	3779	3843	3693	4786	4457	3282	3815	3941	
	1700	1 ft	1638	1790	1979	2827	2657	1914	2163	2188	166
		3 ft	1020				96	79	101	110	118
	1808	1 ft	170	123	111	102		48	60	64	59
		3 ft	<i>7</i> 5	62	52	57	53	40			
			40	52	43	40	11	4	0.2	1	0.5
	1912	1 ft	49		26	30	7	3	0	0.8	0.3
		3 ft	25	26				4	1	0.5	0.5
	2010	1 ft	42	61	47	46	13	4	0.8	0.5	0
	2010	3 ft	19	20	23	24	7	2	U.0		
				50	53	46	13	3	1	0.8	0.3
	2109	1 ft	44	59		29	7	2	0.8	0.2	0.1
		3 ft	22	18	21						
				Near:	1837		Far:	1842			
	Forebay L	ights on	1:	Near .	10.57	•	Location				
			1	2	3	4	5	6	7	8	9 1065
Date	Time	- , , -	4000	3617	3036	4598	4200	3268	3290	3801	
Oct-10	1607	1 ft		1415	1403	1926	1960	1054	1592	1678	1497
		3 ft	1525				2990	2350	2880	3014	3036
	1709	1 ft	2676	2520	2453	3148		1139	1460	1568	1503
	2,00	3 ft	973	871	917	1588	1377				
				452	405	476	462	401	404	406	397
	1810	1 ft	572		154	221	220	207	191	190	179
		3 ft	221	170					7	27	75
	1900	1 ft	47	63	55	55	. 14	5	3	14	41
	1500	3 ft	20	20	31	31	8	2	3		
					42	52	13	5	7	25	70
			4 600	A 1	47	عد					20
	2000	1 ft	45 18	41 15	18	29	6	2	3	13	36

1 ft

3 ft

Table 4-8, cont.

	Forebay I	ights on	ı:	Near:	1818	·	Far: Location	off			9
	pent .	_		2	3	4	5	6	7	8	2414
Date	Time	_ ,	2696	2454	2528	4085	4214	4080	3868	3842	
Oct-19	1604	1 ft	1106	1033	891	1803	1842	2227	2155	1610	1322
		3 ft				1920	1834	1601	1539	1599	1283
	1702	1 ft	1565	1404	1201		666	657	698	661	505
		3 ft	475	490	401	725			•	90	64
	1003	1 ft	196	169	142	160	122	102	99		27
	1803	3 ft	74	66	52	68	<i>5</i> 6	51	40	37	
						47	8	2	0.5	0	0.3
	1941	1 ft	46	61	51		3	1	0.3	0	0
		3 ft	21	25	28	24				0.2	0.3
	2106	1 ft	48	64	54	45	10 -	2	1	0.3	0.5
	2106	1 n 3 ft	21	25	27	23	4	1	0.5	0	
				Near:	1758 _		Far:	1808			
	Forebay I	agnts on	1;	Titali.			Location				9
		_	1		3	4	5	6	7	8	1434
Date	Time	_ ,	1584	1461	1322	1850	1770	1729	1759	1744	693
Oct-20	1600	1 ft	718	624	530	823	729	791	866	816	
		3 ft	110				699	751	762	692	540
	1706	1 ft	735	574	576	632	351	335	338	312	255
		3 ft	270	235	215	371				19	65
	4040	1 64	52	. 52	46	49	15	9	9		
	1810	1 ft		11	15	22	6	3	4	16	28
		3 ft	11				12	7	6	16	64
	1910	1 ft	42	48	38	45		2	3	10	24
		3 ft	15	11	12	22	6				65
v			ر سے د سے	40	34	39	11	6	6	19	
	2000	1 ft	54	9	13	20	5	2	3	11	25
		3 ft	18				12	5	6	17	57
						45	17	_1	v	- •	
	2100	1 ft	41	48	39 17	45 23	6	3	3	11	27

Table 4-8. cont.

	Forebay L	ighte or	1*	Near:	1755	_	Far: _	off	•		
	Foreday L	vania or				•	Location		7	8	9
Date	Time	_	1	2	3	4	5	6	1452	1508	1622
Oct-21	1600	_ 1 ft _	1226	1207	1215	1470	1445 724	1203 615	708	760	833
		3 ft	558	571	550	742			413	444	427
	1712	1 ft	864	712	726	614	532	384		202	205
	1712	3 ft	330	320	256	295	248	191	203		
				95	73	78	43	34	27	28	26
	2125	1 ft	85 53	93 51	48	54	36	30	25 .	26	25
		3 ft	53					33	41	· 46	38
	2143 *	1 ft	63	59	54	41	35		41	41	35
	#	3 ft	58	53	47	37	33	31	41		
				Near:	1801		Far:	1808			
	Forebay L	ights on	1:	Mear.	1001	•	Location				
			1	2	3	4	5	6	7	8	9.
Date	Time	–	7984	9418	8966	9864	10210	9935	9884	9758	8558
Oct-26	1550	1 ft	7984 3644	3477	3787	5143	4952	4848	5090	4962	4560
		3 ft	30 44				2667	2464	2302	2383	2047
	1708	1 ft	2623	2445	2224	2642	1170	1143	1167	1121	1032
		3 ft	1030	1040	852	1275					87
	1002	1 ft	55	61	72	65	27	15	13	26	47
	1803	3 ft	26	33	. 25	35	13	8	7	19	
	•					46	13	6	6	26	69
	1904	1 ft	42	59	47	26	8	3	4	15	46
		3 ft	20	24	24				•	25	68
	2005	1 ft	44	61	45	47	13	5	7	12	40
	#UU3	3 ft	18	22	14	26	6	2	4		
					40	50	11	4	5 ·	25	66
	2107	1 ft	51	74	40 26	26	6	2 .	3	13	38
		3 ft	20	23	20	20					

Table 4-8. cont.

	Forebay I	ights or	1:	Near:	1801		Far: Location	off	7	8	9
TD . 4 .	Time		1	2	3	4	5	6	4728	4769	4275
Date	1602	_ _{1 ft} _	3976	3050	3117	4375	4518	4757		2367	2319
Oct-27	1002	3 ft	1651	1342	1304	2176	2216	2561	2425		
				1000	935	1358	1285	1272	1225	1181	1046
	1705	1 ft	1208	1098	405	683	668	631	611	566	506
		3 ft	541	476		•		4	3	2	1
	1811	1 ft	44	33	35	49	15	6	1	0.5	0.5
	1011	3 ft	20	20	17	25	6	3	1		
				er 4	35	44	11	4	2	0.8	0.5
	1905	1 ft	46	51		25	6	1	0.5	0	0
		3 ft	17	19	16				1	0.5	0.3
	2000	1 ft	45	21	36	44	10	4	0.5	0.3	0
	2000	3 ft	21	18	19	26	7	2	0.5		
					37	45	12	4	1	0.5	0.3
	2107	1 ft	1 ft 48	30		23	6	1 0.3	0.3	0.3	0
		3 ft	22	24	16						
<u></u>	<u> </u>			NT	1805		Far:	off			
	Forebay L	ights on	1	Near:	1003		Location				
					3	4	5	6	7	8	9
Date	Time		1	4763	4013	5782	5876	5718	5454	5756	5335
Oct-28	1600	1 ft	4966		1754	2805	2902	2874	2885	2807	2729
		3 ft	1904	1820				2525	2347	2260	1944
	1705	1 ft	2869	2618	2246	2481	2411		1118	1062	869
	1703	3 ft	1247	1203	772 -	1238	1146	1164			
					54	56	22	16	10	8	6
	1805	1 ft	39	47	18	29	11	5	4	3	3
		3 ft	18	24					2	0.8	0
	2008	1 ft	43	. 56	37	49	13	3	0.5	0.3	0
	∠ 000	3 ft	19	20	16	25	6	2	U.J	0.5	•

Table 4-9. Light intensity (lux) vs. depth at the log sluice gate, Cabot Station, fall 1993.

							. 44	4	ft	£	i ft	(ft	7	ft		ft	9	ft	10 ft	coeffic
Date	Time	1	ft	2	ft		ft					130		104		85		67		56	
Sep-22 coefficient	1645 t	390	0.251	292	0.144	250	0.188	203	0.202	162	0.198	-	0.200		0.183	90	0.212	70	0.164	60	0.18
Sep-23 confficient	1646 t	410	0.171	340	0.176	280	0.250	210	0.190	170	0.118	150	0.333	100	0.100	8	0.222	7	0.143	5	0.18
Sep-24 coefficient	1549 t	43	0.163	36	0.222	28	0.179	23	0.217	18	0.278	13	0.154	11	0.273	70	0.125	60	0.286	50	0.21
	1555	420	0.238	320	0.344	210	0.286	150	0.267	110	0.136	95	0.158	. 60	0.125		0.143	8	0.167	6	0.20
	1643	63	0.226	41	0.098	37	0.270	27	0.185	22	0.182	18	0.278	13	0.231	10	0.200	90	0.250	· 70	0.21
	1530	625	0.200	500	0.250	375	0.200	300	0.300	210	0.190	170	0.206	135	0.185	110	0.182		0.222	100	0.21
Oct-05	1541	1300	0.385	60 0	0.188	650	0.231	500	0.200	400	0.250	300	0.333	200	0.000	200	0.250	150	0.333		0.24
,01	1540	49	0.367	31	0.323	21	0.476	11	0.000	11	0.182	9	0.222	7	0.143	6	0.333	4	0.260	3 .	0.28
,01 0,	1548	600	0.300	420	0,202	335	0.313	230	0.283	165	0.273	120	0.233	92	0.185	75	0.267	56	0.273	40	0,28
JUL UU	1556	980		740	0.162	620	0.242	470	0.366	298	0.312	205	0.293	145	0.172	120	0.167	100	0.220	78	0.24
coefficient)ct-09	1543	120	0.245	90	0.111	80	0.250	60	0.167	Б0	0.200	40	0.250	30	0.167	25	0.200	20	0.250	15	0.20
coefficient oct-10	1550	410	0.250	280		210	0.286	150	0.267	110	0.273	80	0.250	60	0.333	40	0.125	35	0.286	25	0.26
coefficient oct-19	1537	655	0.317	300	0.250	255	0.286	182	0.286	130	0.269	95	0.316	65	0.308	45	0.222	35	0.286	25	0.28
coefficient	1550	205	0.459	150	0.150	115		85	0,294	, 60	0.200	48	0.271	35	0.286	25	0.200	20	0.250	15	0.25
coefficient	-	275	0.268	190	0.233	140	0.261	95	0,263	70	0.214	66	0.364	35	0.286	25	0.400	15	0.333	10	0.30
coefficient	•	1100	0.309	885	0.263	620	0.321	450		336	0.313	230	0.239	175	0.286	125	0.280	90	0,278	65	0.26
coefficient		55	0.195	40	0.299	31	0.274	23	0.256	17		11	0.273	8	0.250	6	0.167	5	0.200	4	0.25
coefficient		950	0.273	650	0.225	512	0.258	375	0.261	265	0.353	197	0.239	150	0.267	110	0.273	80	0.250	60	0.26
ct-28 coefficient	1540		0.316		0.212	0.2	0.268		0.293 239		0.257 233	ο.	0.239	0.2	210	0.2	220	0.2	247		0.24

Table 4-10. Non-alosids collected during sampling at Cabot Station, fall, 1993.

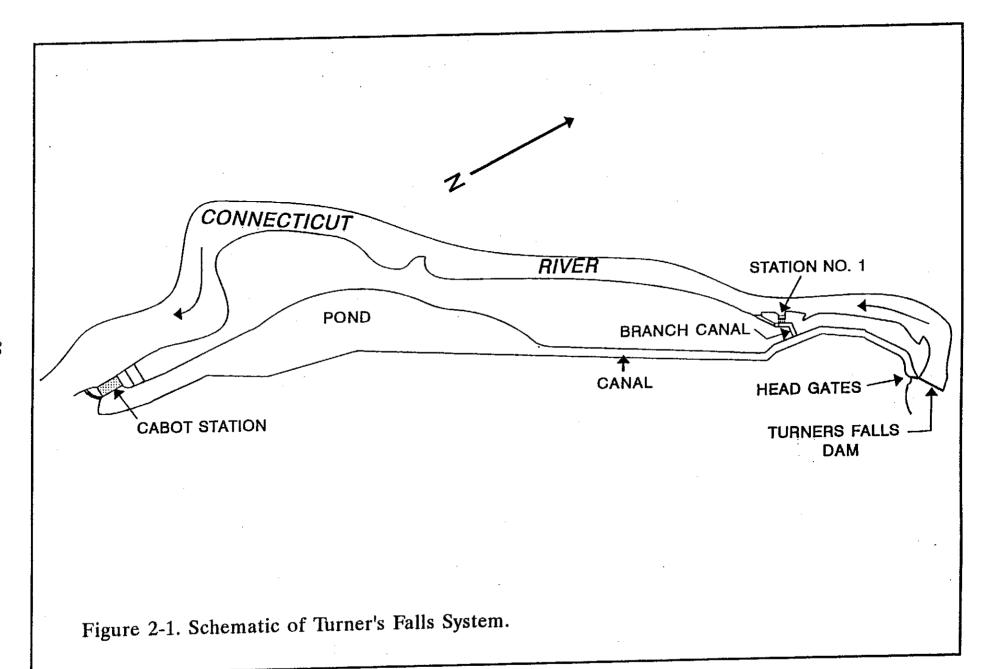

Common Name	Scientific Name	Number
American eel	Anguilla rostrata	406
White perch	Morone americana	146
Smallmouth bass	Micropterus dolumieu	42
Bluegill	Lepomis macrochirus	21
Sea lamprey	Petromyzon marinus	18
Rock bass	Ambloplites rupestris	17
Spottail shiner	Notropis hudsonius	16
Largemouth bass	Micropterus salmoides	3
Black crappie	Pomoxis nigromaculatus	3
Redbreast sunfish	Lepomis auritus	2
Yellow perch	Perca flavescens	2
Walleye	Stizostedion vitreum	2
Brown trout	Salmo trutta	1
Common carp	Cyprinus carpio	1
Pumpkinseed	Lepomis gibbosus	1


Table 4-11. Number and percent composition by day of American shad and blueback herring collected during sampling at Cabot Station, fail 1993.

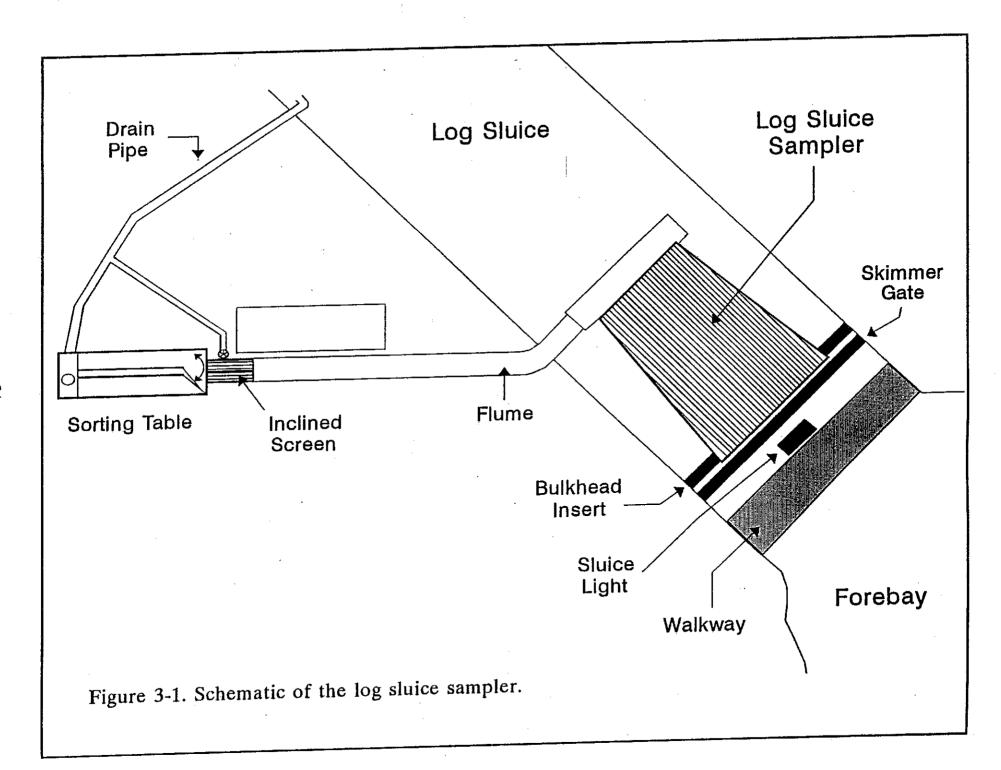

	America	n shad	Blueback	herring
Date	#	%	#	%
08 Sep	86	97.73	2	2.27
09 Sep	196	90.32	21	9.68
10 Sep	206	96.26	8	3.74
22 Sep	178	98.34	3	1.66
23 Sep	300	96.46	11	3.54
24 Sep	126	98.44	2	1.56
27 Sep	304	99.35	2	0.65
28 Sep	4	100.00	0	0.00
29 Sep	337	99.41	2	0.59
05 Oct	263	97.05	8	2.95
06 Oct	446	.91.39	42	8.61
07 Oct	527	93.77	35	6.23
08 Oct	584	92.99	44	7.01
09 Oct	572	91.81	51	8.19
10 Oct	322	76.85	97	23.15
19 Oct	608	97.12	18	2.88
20 Oct	178	99.44	1	0.56
21 Oct	566	94.18	35	5.82
26 Oct	297	99.33	2	0.67
27 Oct	534	85.03	94	14.97
28 Oct	422	87.37	61	12.63
05 Nov	469	91.42	44	8.58
12 Nov	403	99.26	3	0.74
Total	7928	93.12	586	6.88

Table 4-12. Length frequency distribution (5mm total length groups) of American shad and blueback herring collected during sampling at Cabot Station, fall 1993.

	Length (mm)	American shad	Blueback herring
		_	
	51 - 55	0	1
•	56 - 60	3	3
	61 - 65	33	26
•	66 - 70	343	57
	71 - 75	1477	82
	76 - 80	2342	106
	81 - 85	1972	143
	86 - 90	784	106
	91 - 95	340	33
	96 - 100	259	7
	101 - 105	169	1
	106 - 110	96	0
	111 - 115	46	0
	116 - 120	22	0
	121 - 125	- 19	0
	126 - 130	4	. 0
	131 - 135	2	0
	141 - 145	. 1	0
	,	-	,
	Total	7912	565

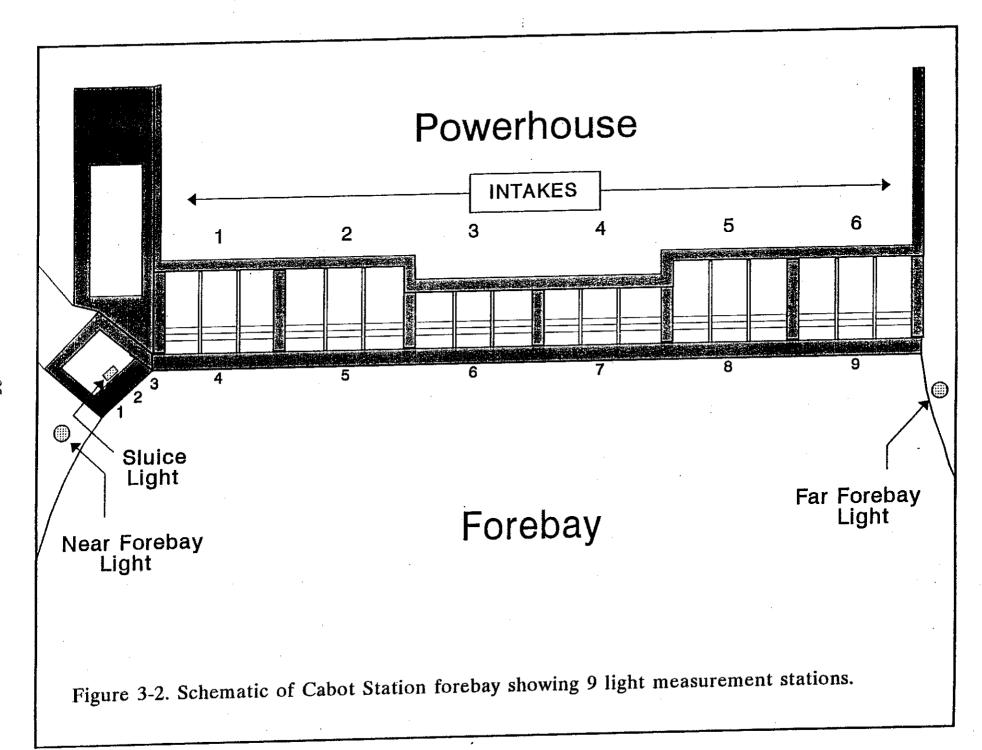


FIGURE 4-1. DAILY CLUPEID CATCH WITH MEAN WATER TEMPERATURE (C) AND CANAL FLOW (cfs) AT CABOT STATION, 1993.

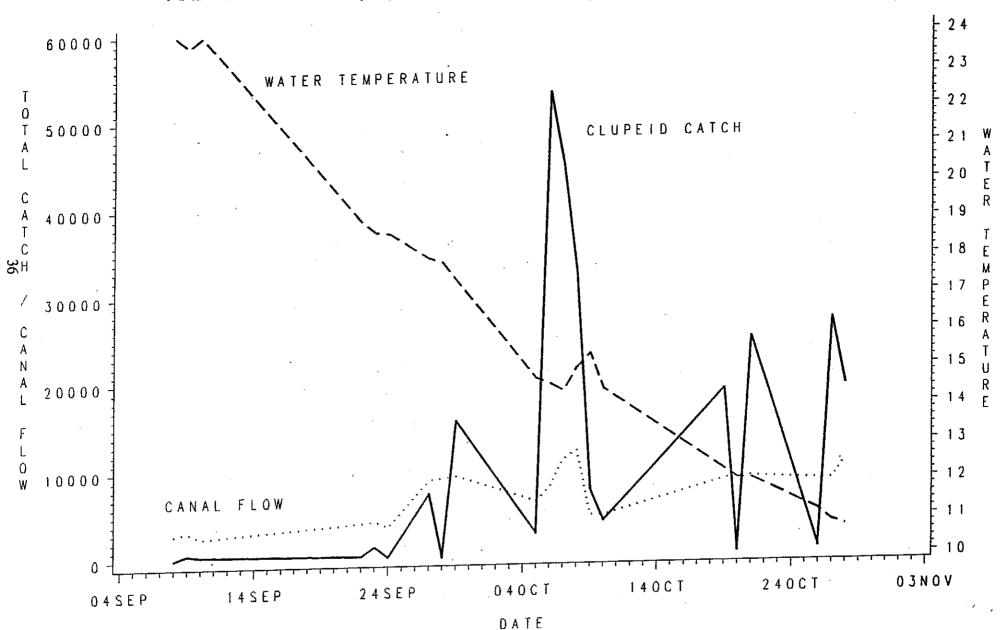
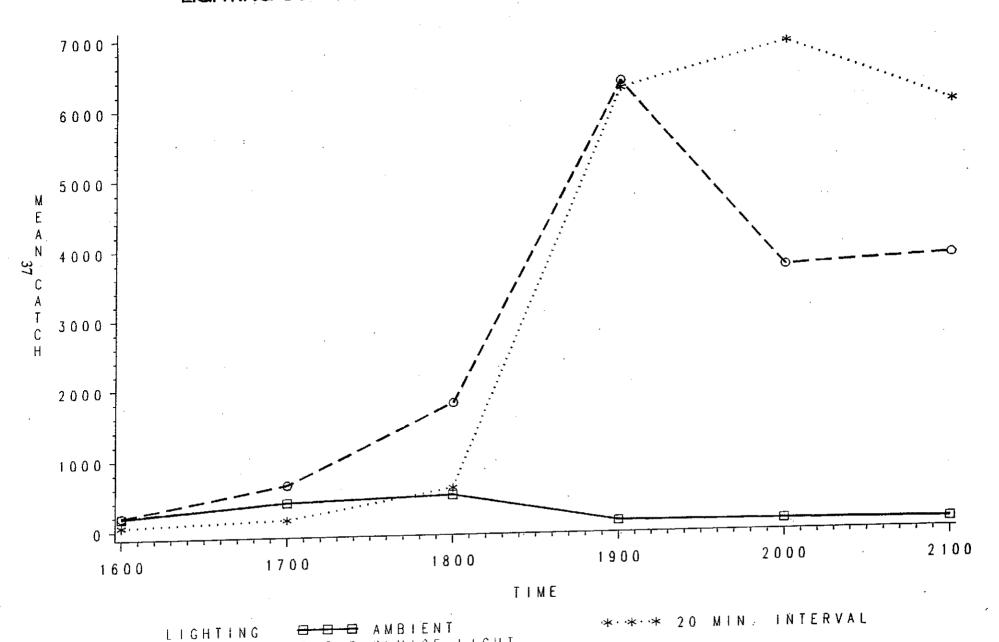



FIGURE 4-2. MEAN CLUPEID CATCH BY TIME OF DAY FOR EACH LIGHTING SCHEME USED AT CABOT STATION, 1993.

APPENDIX I

List of Statistical Tables

Γable A-1	Correlation matrix of environmental variables with catch from Cabot Bypass Canal, 1993. Only start times from 19:00 on used.	39
Γable A-2	ANOVA for week and lighting as main effects for clupeid catch at Cabot Station Fall 1993. Only start times from 19:00 on used	, 40
Table A-3	Correlation matrix of environmental variables with log(catch+1) from Cabot Bypass Canal, 1993. Only start times earlier than 19:00 used	41
Table A-4	ANOVA for week and lighting as main effects for log(clupeid catch +1) at Cabo Station, Fall 1993. Only start times earlier than 19:00 used	
Table A-5	Correlation matrix of environmental variables with catch from Cabot Bypass Canal, 1993. Only start times earlier than 19:00 used.	43
Table A-6	ANOVA for week and lighting as main effects for clupeid catch at Cabot Station Fall 1993. Only start times earlier than 19:00 used	
Table A-7	Analysis of variance for log(clupeid catch+1) at Cabot Station, Fall 1993. Catch during intermittent lighting used	45
Table A-8	Analysis of variance for clupeid catch at Cabot Station, Fall 1993. Catch during intermittent lighting used	3 46

Table A-1. Correlation matrix of environmental variables with catch from Cabot Bypass Canal, 1993. Only start times from 19:00 on used.

4 'V		RRELATION ANALYSIS ATCH DATE AVGF	LOW AVGWATER		
		LIGHTING = AMB			
		Simple Statistics	_		
					Maximum
					155 12352
• 7	6547.238095	2772.765365	45831	2924.333333	9182,333333
7	15.957143	4.477339	111.7	11	24
Pea	erson Correlation Coef	ficients / Prob > R un	der Ho: Rho = O / N =	= 7	•
	TOTCATCH	DATE	AVGFLOW	AVGWATER	
TOTCATCH	1	-0.06339	-0.70271	0.02586	
1010/110/1	ò	0.8926	0.0783	0.9561	
DATE	-0.06339	1	0.6819	-0.98468	, ,
	0.8926	0	0,0915	0.0001	
AVGFLOW	-0.70271	0.6819	1	-0.68726	
	0.0783	0.0915	0	880.0	
AVGWATER	0.02586	-0.98468	-0.68726	1	
	0.9561	0.0001	0.088	0	•
		LIGHTING = INT			
		Simple Statistics	,		
N	Mean	Std Dev	Sum	Minimum	Maximum
7	19078	18532	133549	405	52436
7	12331	16,469308	86315	12306	12354
7	8038.714286	3624.076395	56271	2527.666667	12716
7	16.02381	4.561746	112.166667	10.5	24
Po	earson Correlation Co	efficients / Prob > [R] ι	ınder Ho: Rho=0 / N	= 7	
	TOTCATCH	DATE	AVGFLOW	AVGWATER	
TOTCATCH	1	0.48911	0.58175	-0.59836	
	0	0.2653	0.1706	0.1558	
DATE	0.48911	1	0.77521	-0.97896	
	0.2653	0	0.0406	0.0001	
AVGFLOW	0.58175	0.77521	1.	-0.78825	
	0.1706	0.0406	0	0.0352	
AVGWATER	-0.59836	-0.97895	-0.78825	1	
	0.1558	0.0001	0.0352	0	
•		LIGHTING = SL		•	
N	Mean	,	Sum	Minimum	Maximun
					43304
					1235
					1107
. 7	15.957143	4.363176	111.7	10.666667	23.
	Pearson Correlation (Coefficients / Prob > IR	under Ho: Rho=0 /	N = 7	
	TOTCATCH	DATE	AVGFLOW	AVGWATER	
TOTCATCH					
15.57.1011	ò	0.3344	0.0082	0.2232	
DATE					
SAIL	0.3344	ò	0.1295	0,0001	
AVGELOW		0.62987			
MAGI FOAM					
AVGWATER	-0.52793	-0.98841	-0.71577	1,	-
	N 7 7 7 7 7 7 7 7 7 7 7 7 7 TOTCATCH DATE AVGFLOW AVGWATER N 7 7 7 7 7 TOTCATCH DATE AVGFLOW AVGWATER	N Mean 7 81.857143 7 12330 7 6547.238095 7 15.957143 Pearson Correlation Coef TOTCATCH TOTCATCH 1 0 DATE -0.06339 0.8926 AVGFLOW -0.70271 0.0783 AVGWATER 0.02586 7 12331 7 8038.714286 7 16.02381 Pearson Correlation Coef TOTCATCH TOTCATCH 1 0 DATE 0.48911 0.2653 AVGFLOW 0.58175 0.1706 AVGWATER -0.59836 0.1558 N Mean 7 13781 7 12331 7 7120.047619 7 15.957143 Pearson Correlation Coef TOTCATCH TOTCATCH TOTCATCH 1 0 DATE 0.48911 0.2653 AVGFLOW 0.58175 0.1706 AVGWATER -0.59836 0.1558	A 'VAR' Variables: TOTCATCH DATE AVGF	A 'VAR' Variables: TOTCATCH DATE AVGPLOW AVGWATER	A 'VAR' Variables: TOTCATCH DATE AVGFLOW AVGWATER

Table A-2. ANOVA for week and lighting as main effects for clupeid catch at Cabot Station, Fall 1993. Only start times earlier than 19:00 used.

		Ger	neral Linear Models Procedure Class Level Information		
	Class	Levels	Values		
	LIGHTING	3 2	O MIN. INTERVAL AMBIENT	SLUICE LIGHT	
÷	WEEKOF	7	1 2 3 4 5 6 7		
		Numbe	r of observations in data set :	= 21	
		Ge	neral Linear Models Procedure		
		De	pendent Variable: TOTCATCH		
Source	DF	Sum of Squares	Mean Square	F Value	Pt > F
Model	8	57199483.43	7149935.429	1.91	0,1503
Error	12	44886283.14	3740523.595		
Corrected Total	20	102085766.6	•		
	R-Square	c.v.	Root MSE	TOTCATCH Mean	
	0.560308	134,6693	1934.043328	1436.142857	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
LIGHTING	2	13798988.86	6899494.429	1.84	0.2002
WEEKOF	6	43400494.57	7233415.762	1.93	0.1559
Source	DF	Type III SS	Mean Square	F Value	Pr > F
LIGHTING	2	13798988.86	6899494.429	1.84	0,2002
WEEKOF	6	43400494,57	7233415.762	1.93	0.1559

Duncan's Multiple Range Test for variable: TOTCATCH

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha = 0.05 df = 12 MSE = 3740524

Number of Means 2 3 Critical Range 2248 2355

Means with the same letter are not significantly different.

LIGHTING

	Α .	2572	7	SLU	CE LIGHT		
	A A	1002	7	AME	BENT		
	A A	734	7	20 N	MIN. INTERVAL		
•		Los	ast Squares Means			•	
LIGHTING	TOTCATCH	Std Err	. Pr > T	Pr >	T HO: LSMEAN	i(i) = LSMEAN(j)	
	LSMEAN	LSMEAN	HO:LSMEAN=0	VI	1	2	3
20 MIN. INTERVA	734	730.99967	0.3351	1.		0.7995	0.1007
AMBIENT	1002.42857	730.999 67	0.1954	2	0.7995 ,		0.1548
SLUICE LIGHT	2572	730.999 67	0.0042	3	0.1007	0.1548 .	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Duncan Groupin

Table A-3. Correlation matrix of environmental variables with log(catch + 1) from Cabot Bypass Canal, 1993. Only start times earlier than 19:00 used.

	A 11	CO AR' Variables: LOGO	RRELATION ANALYSI: ATCH DATE AVO	S BFLOW AVGWATER		
	4 1	VAR Vanables: LOGC	LIGHTING #AMB	SPLOW AVGWATER	l	
		Simple Statistics				
Veriabl e	N	Mean	Std Dev	Sum	Minimum	Maximum.
LOGCATCH	. 7	1.732758	1.602491	12.129309	0	3.580925
DATE	7	1 2330	16.267116	86313	12304	12352
AVGFŁOW	7 7	5900,904762	2674.752815	41306	2828.333333	8942
AVGWATER	,	16.280952	4,415036	113.966667	11.266667	24
	Pe	sarson Correlation Coe	fficients / Prob > R	under Ho: Rho=0 / N	= 7	
		LOGCATCH	DATE	AVGFLOW	AVGWATER	
	LOGCATCH	1	0.67599	-0.0078	-0.71098	
		0	0.0955	0.9868	0.0733	
	DATE	0.67599	1	0.64817	-0.98946	
		0.0955	0	0.1154	0.0001	
	AVGFLOW	-0.0078	0.64817	1	-0.61634	
		0.9888	0.1154	0	0.1405	
	AVGWATER	-0.71098	-0.98946	-0.61634	1 1	
		0.0733	0.0001	0.1406	0	
		,	LIGHTING = INT	·		
			Simple Statistics	•		
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
LOGCATCH	7	1.933958	1.415579	13,537705	0	3,426349
DATE	7	12331	16.469308	86315	12306	12354
AVGFLOW	7	7686,904762	3180.729463	53108	2442.666667	11364
AVGWATER	7	16.266667	4.467993	113.866667	10.933333	24
	i	Pearson Correlation Co	efficients / Prob > R	under Ho: Rho = 0 / N	1 = 7	
		LOGCATCH	DATE	AVGFLOW	AVGWATER	
	LOGCATCH	1	0.83631	0.74443	-0.86745	
		Ö	0.019	0.055	0.0114	
	DATE	0.83631	1	0.76B29	-0.98571	
		0.019	0	0.0436	0.0001	1
	AVGFLOW	0.74443	0.76829	1	-0.79925	
		0.055	0.0436	0	0.031	
,	AVGWATER	-0,86745	-0,98571	-0.79925	1	
		0.0114	0.0001	0.031	O	
			LIGHTING = SL			
			Simple Statistics			
Variable	N	Mean	Std Dev	Sum	Minimum	Maximun
LOGCATCH	7	2.256869	1.725701	15.798083	0	3.97238
DATE	7	12331	16.226081	86314	12305	1235
WOJTDVA	7	6853,571429	3090,385004	47975	3363.333333	1092
AVGWATER	7	16.32 381	4,364915	114.266667	11	23.93333
•		Pearson Correlation (Coefficients / Prob >	R under Ho: Rho=Q /	N = 7	
		LOGCATCH	DATE	AVGFLOW	AVGWATER	
	LOGCATCH	1	0.9241	0.5002	-0.91127	•
		ò	0.0029	0.2529	0.0043	
	DATE	0.9241	1	0.53121	-0.98669	
		0.0029	ò	0.2198	0.0001	
	AVGFLOW	0.5002	0.53121	1	-0.59693	
		0,2529	0.2198	o	0.1571	
	AVGWATER	-0.91127	-0.98669	-0.59 693	. 1	
		-,	-1	0,0000	•	

Table A-4. ANOVA for week and lighting as main effects for log(clupeid catch + 1) at Cabot Station, Fall 1993. Only start times earlier than 19:00 used.

•			near Models Procedure Level Information	•	•		
	Class	Levels	Values				
	LIGHTING	3 20 MIN	INTERVAL AMBIENT	SLUICE LIGHT			
	WEEKOF	· 7	1 2 3 4 5 6 7				
		Number of ob-	servations in data set =	21			•
		General L	inear Models Procedure	•			
		Depende	nt Variable: LOGCATCH			,	
ource	DF	Sum of Squares	Mean Square	ſ	· Value		Pr > F
fodei .	8	43.37375681	5.4217196		22.4		0.0001
Frror	12	2.9042653	0.24202211				
Corrected Total	20	46.27802211					
	R-Square	c.v.	Root MSE	LOGCATC	H Mean		
	0.937243	24.91519	0.49195743	1.97	452845		
Source	DF	Type I SS	Mean Square		F Value		Pr > F
LIGHTING	2	0.97870437	0.48935219		2.02		0.1761
WEEKOF	. 6	42.39505243	7.065 84207		29.2		0.0001
Source	DF	Type III SS	Mean Square		F Value		Pr > 1
LIGHTING WEEKOF	2 6	0.97870437 42.39605243	0.48935219 7.0658420 7		2.02 29.2		0.175° 0.000°
		General	Linear Models Procedure	•			
		Duncan's Multiple	Range Test for variable:	LOGCATCH			
	NOTE: T	his test controls the type i con	nparisonwise error rate, r	not the experimentwis	e error rate		
		Alpha = 0.0	6 df= 12 MSE= 0.24	2022			
	·		ber of Means 2 3 al Range 0.572 0.599				
		Means with the san	ne letter are not significa	intly different.			
	Duncan Groupin	Mean	. N	ı	IGHTING.		
	A	2,257	7	SLUK	CE LIGHT		
	A A	1.934	. 7	20 M	IN. INTERVAL		
	· A						
	A	1.733		AMB	ENT		
·			n Linear Models Procedu Least Squares Means	ге			
LIGHTING	LOGCATCH	Std Err	Pr > T		•	N(i) = LSMEAN(j)	
	LSMEAN	LSMEAN	HO:LSMEAN = 0	1/j	1	2	
20'MIN. INTERVA	1.93395791	0.18594243	0.0001			0.459	0.2
AMBIENT	1.73275843	0.18594243	0,0001		0.469		0.06
SLUICE LIGHT	2.25686902	0.18594243	0.0001	3	0.243	0.0695	

Table A-5. Correlation matrix of environmental variables with catch from Cabot Bypass Canal, 1993. Only start times earlier than 19:00 used.

	4 17		RRELATION ANALYSIS	ei 0111 - A1/01114 TEN		•
	4."	VAR' Variables: TOTC		FLOW AVGWATER		
	· · · · · · · · · · · · · · · · · · ·		LIGHTING = AMB			
N4_J_L.1_	6.1	M	Simple Statistics	C.	h áta i ann ann	Marrian
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
OTCATCH	7	1002.428571	1540,39766	7017 86313	0 1 2304	3809 12352
ATE VGFLOW	7	12330 5900,904762	16.267116 2674.752815	41306	2828.333333	8942
VGWATER	. 7	16,280952	4.415036	113.966667	11.266667	24
	· P.	erron Correlation Coef	ficients / Prob > R u	nder Ho: Rho = 0 / N	= 7	
	10	TOTCATCH	DATE	AVGFLOW	AVGWATER	
	T0T04 T011					
	TOTCATCH	1 0	0.24108 0.6025	-0.38852 0.3891	-0,2984 0.5157	
	DATE	0.24108	1	0.64817	-0,98946	•
	DAIL	0.6025	ò	0.1154	0.0001	
	AVGFLOW	-0.38852	0.64817	1	-0.61634	
	A1012011	0.3891	0.1164	o O	0.1405	
	AVGWATER	-0.2984	-0.98946	-0.61634	1	
		0.5157	0.0001	0.1405	0	
			LIGHTING = INT			
			Simple Statistics			
Verlable	N	Mean	Std Dev	Sum	Minimum	Maximum
					•	
TOTCATCH DATE	7 7	734 12331	949.247597 16.469308	5138 86315	0 12306	2668 12354
AVGFLOW	7	7586.904762	3180.729463	53108	2442.666667	11364
AVGWATER	7	16.266667	4.467993	113.866667	10.933333	24
	,	Peerson Correlation Co	officients / Prob > 101	under Hot Obo = 0 / N	u - 7	
		TOTCATCH	efficients / Prob > R DATE		AVGWATER	
				AVGFLOW		
	TOTCATCH	1 0	0.47272 0.2841	0.71 <i>6</i> 06 0.0703	-0.49703 0.2565	
	2.4					
	DATE	0.47272 0.2 84 1	1	0,76829 0.0436	-0,98571 0,0001	
	AVCCLOW				-0.79925	
	AVGFLOW	0.71606 0.0703	0.76 829 0.0436	1 0	-0.7992 8 0.031	

	AVGWATER	-0.49703 0.2565	-0.98571 0.0001	-0.79925 0.031	1	
		4.2000	0.0001	3,13,	*	
			LIGHTING = SL	•		·
			Simple Statistics			
Variable	N	Маап	Std Dev	Sum	Minimum	Maximun
TOTCATCH	7	2572	3382,390723	18004	0	938
DATE	7	1 2331	16,226081	86314	12305	1235
AVGFLOW	7	6853.571429	3090.385004	47975	3363,333333	1092
AVGWATER	. 7	16.32381	, 4.364915	114.266667	11	23.93333
		Pearson Correlation C	Coefficients / Prob > F	Rijunder Ho: Rho=0 /	/N = 7	
		TOTCATCH	DATE	AVGFLOW	AVGWATER	
	TOTCATCH	1	0.85252	0,26002	-0.782 37	
		0	0.0148	0.5734	0.0376	
	DATE	0.85252	1	0.53121	-0.98669	
		0.0148	0	0.2198	0,0001	
	AVGFLOW	0.26002	0.53121	1	-0.59693	
		0.5734	0.2198	0	0.1571	
	AVGWATER	-0.78237 0.0376	-0.98669 0.0001	-0.596 93 0.1571	1	

Table A-6. ANOVA for week and lighting as main effects for clupeid catch at Cabot Station, Fall 1993. Only start times earlier than 19:00 used.

			zi Linear Models Procedure Sass Level Information			•
	Class	Loveis	Values			
	LIGHTING	3 20	MIN. INTERVAL AMBIENT	SLUICE LIGHT		
	WEEKOF	7	1 2 3 4 5 6 7			
		Number o	f observations in data set =	21		
		Depe	ndent Variable; TOTCATCH			
ourca	DF	Sum of Squares	Mean Square	F Val	uo	Pr > F
fodel	8	57199483,43	7149935.429	. 1.	91	0.1503
rror	12	44886283.14	3740523.595			
Corrected Total	20	102085766.6				ı
	R-Square	c.v.	Root MSE	TOTCATCH Me	ean .	•
	0.560308	134.6693	1934.043328	1436.1428	57	
Source	DF	Type I SS	Mean Square	F Va	lue	Pr > F
.IGHTING	2	13798988.86	6899494.429	. 1	.84	. 0.2002
WEEKOF	6	43400494.57	7233415.762	1	.93	0.1559
Source	DF	Type III SS	Mean Square	F Va	iluo	Pr > P
LIGHTING	2	13798988.86	6899494.429		.84	0,2002
WEEKOF	6	43400494.57	7233415,762	1	.93	0.1559
			eral Linear Models Procedure ple Range Test for variable:			
	NOTE: TH	nis test controls the type I	comparisonwise error rate, n	ot the experimentwise em	or rate	
		Alpha =	0.05 df = 12 MSE = 3740	1524		
			Number of Means 2 3			
		Means with the	same letter are not significa	ntly different.		
1	Duncan Grouping	Mean	N	Ligh⁻	пма	
	Α	2572	7	SLUICE LI	GHT	
	A	4000	_	AMDICAT		
	A A	1002	7	AMBIENT		
	A	734	7	20 MIN. I	VTERVAL	٠
		Ge	neral Linear Models Procedu Least Squares Means	re		
LIGHTING	TOTCATCH	Std Err	Pr > T		O: LSMEAN(i) = LSME	
	LSMEAN	LSMEAN	HO:LSMEAN = 0	\ \(\lambda \)	1	2
20 MIN. INTERVA	734	730.99967	0.3351		. 0.799	
AMBIENT SLUICE LIGHT	1002.42857 2572	730.99967 730.99967	0.1954 0.0042		.7995 .1007 0,154	0.15

Table A-7. Analysis of variance for log(clupeid catch + 1) at Cabot Station, Fall 1993. Catch during intermittent lighting used.

					·
			Aodels Procedure Information	•	
		Class	Leveis	Values	
		LIGHT	2	OFF ON	
		Number of observat	ions in data set = 69		
		Dependent Vari	able: LOGCATCH		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	0.0447816	0.0447816	0.05	0.8182
Error	67	56.33092791	0.84076012		
Corrected Total	68	56.3757095			
	R-Square	c.v.	Root MSE	LOGCATCH Mean	
	0.000794	33.45184	0.91692972	2.74104433	
Source	- DF	Type I SS	Mean Square	F Value	Pr > F
LIGHT	1 -	0.0447816	0.0447816	0.05	0.8182
Source	DF	Type III SS	Mean Square	F Value	Pr > F
LIGHT	1	0.0447816	0.0447816	0.05	0.8182
			r Models Procedure quares Means		
LIGHT	LOGCATCH LSMEAN	Std Err LSMEAN	Pr > T H0:LSMEAN=0	Pr > T H0: LSMEAN1 = LSMEAN2	
OFF ON	2.76543541 2.71443588	0.15282162 0.15961698	0.0001 0.0001	0.8182	
			. •		
-			r Models Procedure		
		Duncan's Multiple Range			
	NOTE: This test c	.,		he experimentwise error rate	
		WARNING: C	f= 67 MSE= 0.84076 all sizes are not equal, of cell sizes= 34.4347		
			r of Means 2 Range 0.441		
		Means with the same let	ter are not significantly	different.	
	Duncan Grouping	Mean	N	LIGHT	

OFF

ON

36

33

2.765

2.714

Α

Analysis of variance for clupeid catch at Cabot Station, Fall 1993. Table A-8. Catch during intermittent lighting used.

			Models Procedure Il Information		
		Class	Levels	Values	
		LIGHT	2	OFF ON	
		Number of observe	tions in data set = 69		
	•	Dependent V	/ariable: CATCH		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Modei	1	1492295.68	1492295.68	0.23	0.6327
Error	67	433835121.1	6475151.062		
Corrected Total	68	435327416.8		•	
	R-Square	c.v.	Root MSE	CATCH Mean	
	0.003428	130.0657	2544.631813	1956.42029	
Source	DF	Type I SS	Mean Square	F Value	: Pr > {
LIGHT	1	1492295.68	1492295.68	0.23	0.6327
Source	DF	Typė III SS	Mean Square	F Value	Pr > 1
LIGHT	1	1492295.68	1492295.68	0.23	0.632
•	•	•			
		~			
			r Models Procedure quares Means		٠.
LIGHT	CATCH	Std Err	Pr > T	Pr > T HO:	
	LSMEAN	LSMEAN	HO:LSMEAN=0	LSMEAN1 = LSMEAN2	
OFF	2097.22222	424.1053	0.0001	0.6327	÷
ON	1802.81818	442.96354	0.0001		
			·		
		General Line	ar Models Procedure		
•			nge Test for variable: C	ATCH	
•	NOTE: This test o	•	_	the experimentwise error rate	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		f = 67 MSE = 647515	-	
	·	WARNING: C	ell sizes are not equal. of cell sizes = 34.4347		
	·		er of Means 2 al Range 1225		
		Means with the same le		different.	
	Duncan Grouping	Mean	, N		

1802.8 33 ON

36

OFF

2097.2

Α